CONTENTS

Preface vii

Part One General
Built environment 2
The structure 5
Primary and secondary elements 12
Component parts and functions 15
Construction activities 18
Construction documents 19
Construction drawings 20
Building surveys 27
Method statement and programming 31
Weights and densities of building materials 33
Drawings – notations 35
Planning application 39
Modular coordination 44
Construction regulations 46
CDM regulations 47
Safety signs and symbols 48
Building Regulations 50
British Standards 56
European Standards 57
CPI System of Coding 59
CI/SfB system of coding 60

Part Two Site Works
Site survey 63
Site investigations 64
Soil investigation 66
Soil assessment and testing 73
Site layout considerations 80
Site security 83
Site lighting and electrical supply 86
Site office accommodation 90
Materials storage 93
Materials testing 98
Protection orders for trees and structures 105
Locating public utility services 106
Setting out 107
Contents

Levels and angles 111
Road construction 114
Tubular scaffolding and scaffolding systems 122
Shoring systems 134

Part Three Builders Plant
General considerations 144
Bulldozers 147
Scrapers 148
Graders 149
Tractor shovels 150
Excavators 151
Transport vehicles 156
Hoists 159
Rubble chutes and skips 161
Cranes 162
Concreting plant 174

Part Four Substructure
Foundations – function, materials and sizing 183
Foundation beds 192
Short bored pile foundations 198
Foundation types and selection 200
Piled foundations 205
Retaining walls 223
Basement construction 242
Waterproofing basements 245
Excavations 251
Concrete production 257
Cofferdams 263
Caissons 265
Underpinning 267
Ground water control 278
Soil stabilisation and improvement 286
Reclamation of waste land 291
Contaminated sub-soil treatment 292

Part Five Superstructure
Choice of materials 296
Brick and block walls 297
Damp-proof courses and membranes 317
Gas resistant membranes 324
Calculated brickwork 326
Mortars 329
Arches and openings 332
Windows, glass and glazing 339
Domestic and industrial doors 361
Crosswall construction 370
Timber frame construction 372
Steel frame construction 374
Reinforced concrete framed structures 386
Reinforcement types 390
Formwork 393
Precast concrete frames 398
Structural steelwork 409
Portal frames 422
Composite timber beams 430
Multi-storey structures 432
Roofs – basic forms 434
Pitched and flat roofs 438
Plain tiling 445
Single lap tiling 451
Slating 453
Dormer windows 462
Dry and wet rot 471
Long span roofs 479
Shell roof construction 485
Rooflights 494
Cladding to external walls 498
Panel walls 501
Rainscreen cladding 505
Structural glazing 507
Curtain walling 508
Concrete claddings 512
Thermal insulation 517
Thermal bridging 536
Access for the disabled 540

Part Six Internal Construction and Finishes

Internal elements 545
Internal walls 546
Construction joints 551
Partitions 552
Plasters and plastering 557
Dry lining techniques 559
Wall tiling 563
Domestic floors and finishes 565
Large cast insitu ground floors 571
Concrete floor screeds 573
Timber suspended floors 575
Lateral restraint 578
Contents

Timber beam design 581
Reinforced concrete suspended floors 583
Precast concrete floors 588
Raised access floors 591
Sound insulation 592
Timber, concrete and metal stairs 597
Internal doors 620
Doorsets 623
Fire resisting doors 624
Plasterboard ceilings 629
Suspended ceilings 630
Paints and painting 634
Joinery production 638
Composite boarding 643
Plastics in building 645

Part Seven Domestic Services

Drainage effluents 648
Subsoil drainage 649
Surface water removal 651
Road drainage 654
Rainwater installations 658
Drainage systems 660
Drainage pipe sizes and gradients 668
Water supply 669
Cold water installations 671
Hot water installations 673
Flow controls 676
Cisterns and cylinders 677
Pipework joints 679
Sanitary fittings 680
Single and ventilated stack systems 683
Domestic hot water heating systems 686
Electrical supply and installation 690
Gas supply and gas fires 699
Services–fire stops and seals 703
Open fireplaces and flues 704
Telephone installations 713
Electronic communications installations 714

Index 715
PREFACE

This book presents the basic concepts of techniques of building construction, mainly by means of drawings illustrating typical construction details, processes and concepts. I have chosen this method because it reflects the primary means of communication on site between building designer and building contractor – the construction drawing or detail. It must be stressed that the drawings used here represent typical details, chosen to illustrate particular points of building construction or technology; they do not constitute the alpha and omega of any buildings design, detail or process. The principles they illustrate must therefore, in reality, be applied to the data of the particular problem or situation encountered. This new edition has been revised by Roger Greeno, in line with current building regulations.

Readers who want to pursue to greater depth any of the topics treated here will find many useful sources of information in specialist textbooks, research reports, manufacturer’s literature, codes of practice and similar publications. One such subject is building services, which are dealt with here only in so far as they are applicable to domestic dwellings. A comparable but much wider treatment of services is given in *Building Services Handbook* by F. Hall and R. Greeno, also published by Butterworth-Heinemann.

In conclusion, I hope that this book will not only itself prove useful and helpful to the reader, but will act as a stimulus to the observation of actual buildings and the study of works in progress. In this way the understanding gained here will be continually broadened and deepened by experience.

R.C.

PREFACE TO SIXTH EDITION

This new edition enlarges and updates the previous edition. It includes numerous revisions, amendments and additions in line with ongoing practice and legislative changes. Notwithstanding the progressive changes, traditional techniques are retained in support of established construction methods, as much of today’s construction is related to restoration and repair of our heritage.

Included are features of construction that are designed to economise and manage the use of fuel energy in buildings and limit the effect on atmospheric pollution. This incorporates high efficiency heating equipment (see also the companion volume *Building Services Handbook*), thermal envelope, air-tightness of structure and reference to carbon emissions. Some coverage of human rights issues with regard to the less able is also included, with respect to access into buildings and the use of facilities therein.

Construction is a diverse industry, therefore the book’s content is by no means extensive nor is it intended to be prescriptive, as there are many practical solutions to achieving design objectives. By definition this publication is a *Handbook*, and as such it provides guidance through simple illustrations and comprehensive text. Further reading is encouraged and, where appropriate, subjects are provided with supplementary reference sources.

R.G.
1 GENERAL

BUILT ENVIRONMENT
THE STRUCTURE
PRIMARY AND SECONDARY ELEMENTS
CONSTRUCTION ACTIVITIES
CONSTRUCTION DOCUMENTS
CONSTRUCTION DRAWINGS
BUILDING SURVEY
CDM REGULATIONS
SAFETY SIGNS AND SYMBOLS
PLANNING APPLICATION
MODULAR COORDINATION
CONSTRUCTION REGULATIONS
BUILDING REGULATIONS
BRITISH STANDARDS
EUROPEAN STANDARDS
CPI SYSTEM OF CODING
CI/SFB SYSTEM OF CODING
Environment = surroundings which can be natural, man-made or a combination of these.
Built Environment = created by man with or without the aid of the natural environment.
Environmental Considerations

1. Planning requirements.
2. Building Regulations.
3. Land restrictions by vendor or lessor.
4. Availability of services.
5. Local amenities including transport.
6. Subsoil conditions.
7. Levels and topography of land.
8. Adjoining buildings or land.
9. Use of building.
10. Daylight and view aspects.

Examples:

Houses

- Entrance
- Bathrooms etc.
- Studios etc.
- Kitchens
- Dining and areas
- Rest areas
- Lounge

Factories

- Workshops
- Machine shops
- Storage areas

Light assembly work and similar activities

Offices

Studios Laboratories

Art rooms

Handicraft rooms

Workshops

Library

Classrooms

Staff rooms

Offices

Schools

Operating theatres

Wards

Solariums and offices

Hospitals
Physical considerations

1. Natural contours of land.
2. Natural vegetation and trees.
3. Size of land and/or proposed building.
4. Shape of land and/or proposed building.
5. Approach and access roads and footpaths.
6. Services available.
7. Natural waterways, lakes and ponds.
8. Restrictions such as rights of way; tree preservation and ancient buildings.
9. Climatic conditions created by surrounding properties, land or activities.

Examples:

- Split level construction to form economic shape.
- Shape determined by existing trees.
- Plateau or high ground solution giving dry site conditions on sloping sites.
- Stepped elevation or similar treatment to blend with the natural environment.
The Structure—Basic Types

SIMPLY SUPPORTED BEAM
- supported or fixed at one end only
- beam
- supporting wall or column

BUILT-IN BEAM
- supported or fixed at one end only
- beam
- propped at free end

CANTILEVER BEAM

STRUT
structural member which is subjected mainly to compression forces

PROPPED CANTILEVER
- column

VERTICAL STRUT
usually called a column, stanchion or pier
The Structure—Basic Types

TIE
a structural member which is subjected mainly to tension forces

ARCHES
loads are transmitted around arch to the abutments

POST AND LINTEL

PLANE FRAME
SOLID CONSTRUCTION
structurally limited confined usually to buildings of
low height and short spans

main beams

edge beams

load bearing walls

secondary beams

columns

FRAMED OR SKELETAL CONSTRUCTION
The Structure—Basic Forms

Structure consists of a series of interconnected plates forming structural walls and floors.

Panel or Box Construction

Flat slab folded so that roof will behave as a beam spanning along fold.

Diaphragms

Folded Plate Construction

Columns under diaphragms
Shell Roofs ~ these are formed by a structural curved skin covering a given plan shape and area.

Examples ~
- double curvature shell formed by rotating a plain curved shape about a vertical axis
- hemispherical rotational dome
- vertical cut plane
- pendentive
- inscribed polygon

DOME OR ROTATIONAL SHELL
- formed by a curved line moving over another curved line

PENDENTIVE DOME
- cut cylinder giving a single curvature shell
- diaphragm

TRANSLATIONAL DOME

BARREL VAULT
- double curvature saddle shaped shell

CONOID SHELLS

HYPERBOLIC PARABOLOID
The Structure—Basic Forms

a series of interconnected inverted pyramids

SPACE DECK

a series of interconnected grids

SPACE FRAME

compression arch system
tension cables to support coverings

TENSION CABLE STRUCTURE

et of cables forming tension membrane
coverings supported by membrane

TENSION MEMBRANE STRUCTURE
Substructure can be defined as all structure below the superstructure which in general terms is considered to include all structure below ground level but including the ground floor bed.

Typical Examples

- **Ground floor bed**
- **RC column**
- **RC pad foundation**
- **Ground floor bed**
- **Removable cover**
- **Service duct**
- **Ground floor slab**
- **Basement wall**
- **Area paving**
- **Basement raft foundation**
- **Ground level**
- **Strip foundation**
- **Pile foundation**
- **Ground beam**
- **Wall**
Superstructure - can be defined as all structure above substructure both internally and externally.

Primary Elements - basically components of the building carcass above the substructure excluding secondary elements, finishes, services and fittings.

Typical Examples -

- Roof
- External walls
- Galleries
- Partitions
- Framing members
- Beam
- Column
- Upper floors
- Stairs and ramps
- Internal walls

Substructure - see page 11
Secondary Elements ~ completion of the structure including completion around and within openings in primary elements.

Typical Examples

- **EXTERNAL WALLS**
 - borrowed lights and hatches
 - windows
 - doors and door frames
 - doors and door linings

- **INTERNAL WALLS**
 - primary element
 - secondary element
 - floating floors
 - cavity floors
 - floor or roof ~ primary element

- **BALUSTRADES**
 - stairs ~ primary element

- **SUSPENDED CEILINGS**
 - roof ~ primary element

- **ROOFLIGHTS**
Finish ~ the final surface which can be self finished as with a trowelled concrete surface or an applied finish such as floor tiles.
Domestic Structures:

- Load of roof coverings plus any snow and wind loads transferred to roof members
- Loads accepted by roof members transferred to walls
- Loads over openings transferred via a lintel to the jambs on either side
- Ceiling loads plus any loads in roof transferred to ceiling joists
- Dead and live loads of flooring transferred to floor joists
- Total floor loads transferred to wall
- Wall loads transferred to foundations
- Total floor loads transferred to internal load bearing wall
- Wall loads transferred to foundations
- Ground floor loads transferred direct to ground
- Total wall loads transferred via foundations to a suitable load bearing capacity subsoil
Framed Structures:

- **Roof Loads Accepted by Beams Transferred to Columns:**
- **Load of Infill Panel Transferred to Edge Beam at Base:**
- **Load of Roof Coverings Plus Any Snow and Wind Loads Transferred to Roof Slab:**
- **Loads Accepted by Roof Slab Transferred to Beams:**
- **Total Roof Loads Transmitted Down Columns:**
- **Live and Loads of Floor Transferred to Main and Secondary Beams:**
- **Main and Edge Beam Loads Transferred to Columns:**
- **Total Column Loads Transferred to Foundation:**
- **Secondary Beam Loads Transferred to Main Beams:**
- **Total on Foundation Transferred to Subsoil:**
External Envelope — consists of the materials and components which form the external shell or enclosure of a building. These may be load bearing or non-load bearing according to the structural form of the building.

Primary Functions:

- **Weather exclusion**
- **Thermal insulation**
- **Heat loss**
- **Sound insulation**
- **Provide ventilation**
- **Provide visual contact with outside**
- **Provide access and egress**
- **Envelope to have adequate strength, stability, durability and fire resistance**
- **Resist moisture penetration rising through the wall from the ground**
A Building or Construction Site can be considered as a temporary factory employing the necessary resources to successfully fulfil a contract.

Manpower:
in the form of managerial and supervisory staff.

Materials:
for temporary works, access provisions, security and final structure.

Money:
in the form of capital investment from the building owner to pay for the land, design team fees and a building contractor who uses his money to buy materials, buy or hire plant and hire labour to enable the project to be realised.

Plant:
from the simple hand held tools to large items such as tower cranes.
ARCHITECTS DRAWINGS
1. Small scale plans and elevations showing general arrangement and layout.
2. Drawings to larger scales giving specific details and data.

ENGINEERS DRAWINGS
1. Small drawings giving general arrangements.
2. Drawings to larger scales giving specific details and data.

SCHEDULES
1. Collation of similar standard items referenced to drawings.
2. Colour and decor schemes.

SPECIFICATION
Written document setting out in detail the specific requirements for materials and workmanship.

BILL OF QUANTITIES
Written document prepared in accordance with the Standard Method of Measurement. Enables estimator to prepare tender sum.

CONTRACT DOCUMENT
Usually a pro forma document but could be specially prepared. Sets out the precise conditions and terms of contract.
Location Drawings ~
Site Plans — used to locate site, buildings, define site levels, indicate services to buildings, identify parts of site such as roads, footpaths and boundaries and to give setting out dimensions for the site and buildings as a whole. Suitable scale not less than 1:2500

Floor Plans — used to identify and set out parts of the building such as rooms, corridors, doors, windows, etc. Suitable scale not less than 1:100

Elevations — used to show external appearance of all faces and to identify doors and windows. Suitable scale not less than 1:100

Sections — used to provide vertical views through the building to show method of construction. Suitable scale not less than 1:50

Component Drawings ~
used to identify and supply data for components to be supplied by a manufacturer or for components not completely covered by assembly drawings. Suitable scale range 1:100 to 1:1

Assembly Drawings ~
used to show how items fit together or are assembled to form elements. Suitable scale range 1:20 to 1:5

All drawings should be fully annotated, fully dimensioned and cross referenced.

Ref. BS EN ISO 7519: Technical drawings — construction drawings — general principles of presentation for general arrangement and assembly drawings.
Sketch ~ this can be defined as a draft or rough outline of an idea, it can be a means of depicting a three-dimensional form in a two-dimensional guise. Sketches can be produced free-hand or using rules and set squares to give basic guide lines.

All sketches should be clear, show all the necessary detail and above all be in the correct proportions.

Sketches can be drawn by observing a solid object or they can be produced from conventional orthographic views but in all cases can usually be successfully drawn by starting with an outline ‘box’ format giving length, width and height proportions and then building up the sketch within the outline box.

Example~ Square Based Chimney Pot.

[Diagram showing measurements and sketching process]

- Given Data
 - Vertical Section
 - 200
 - 25
 - 150
 - 25
 - Plan
 - 200
 - 200

- Outline Box
 - 25
 - 150
 - 25

- Free-Hand Sketch
 - Hatching to convey shape and shadows
Orthographic Projection - a means of drawing independent views of a solid object on a plane surface.

Example - Small Garage and Workshop

The arrangement of the plan and elevations is known as First Angle Projection and is the recommended method of presenting drawings of building works.

NB. the usual annotation and dimensions found on general drawing have been omitted for clarity.
Isometric Projections ~ a pictorial projection of a solid object on a plane surface drawn so that all vertical lines remain vertical and of true scale length, all horizontal lines are drawn at an angle of 30° and are of true scale length therefore scale measurements can be taken on the vertical and 30° lines but cannot be taken on any other inclined line.

A similar drawing can be produced using an angle of 45° for all horizontal lines and is called an Axonometric Projection.

ISOMETRIC PROJECTION SHOWING SOUTH AND WEST ELEVATIONS OF SMALL GARAGE AND WORKSHOP ILLUSTRATED ON PAGE 22
Perspective Projection - a means of representing a three dimensional view of a solid object on a plane surface

- height line
- vanishing point left
- eye line
- ground line
- picture plane

side of plan extended to cut picture plane to fix height line on which all scale heights are plotted

lines drawn from observer parallel to plan sides to cut picture plane to locate vanishing points on eye line

angle of vision between 30° & 60°

observer position by choice depending on view required

horizontal lines of solid object radiating from vanishing points

vanishing point right

height of observers eye above ground level

position of ground line to suit paper size

position of picture plane by choice - the further away from observer the larger the perspective projection

sight lines from observer drawn through all salient points on plan to cut picture plane to fix vertical lines of perspective projection

direct line of vision

NB. this drawing to read in conjunction with page 23
Construction Defects — correct application of materials produced to the recommendations of British, European and International Standards authorities, in accordance with local building regulations, by laws and the rules of building guarantee companies, i.e. National House Building Council (NHBC) and Zurich Insurance, should ensure a sound and functional structure. However, these controls can be seriously undermined if the human factor of quality workmanship is not fulfilled. The following guidance is designed to promote quality controls:

BS 8000: Workmanship on building sites.

Building Regulations. Approved Document to support Regulation 7 — materials and workmanship.

No matter how good the materials, the workmanship and supervision, the unforeseen may still affect a building. This may materialise several years after construction. Some examples of these latent defects include: woodworm emerging from untreated timber, electrolytic decomposition of dissimilar metals inadvertently in contact, and chemical decomposition of concrete. Generally, the older a building the more opportunity there is for its components and systems to have deteriorated and malfunctioned. Hence the need for regular inspection and maintenance. The profession of facilities management has evolved for this purpose and is represented by the British Institute of Facilities Management (BIFM).

Property values, repairs and replacements are of sufficient magnitude for potential purchasers to engage the professional services of a building surveyor. Surveyors are usually members of the Royal Institution of Chartered Surveyors (RICS). The extent of survey can vary, depending on a client's requirements. This may be no more than a market valuation to secure financial backing, to a full structural survey incorporating specialist reports on electrical installations, drains, heating systems, etc.

Further reading:

Established Procedure – the interested purchaser engages a building surveyor.

UK Government Proposals – the seller to provide a property information pack which includes ‘A survey report on the condition of the property, including requirements for urgent or significant repairs . . . ‘.

Survey document preliminaries:

* Title and address of property
* Client’s name, address and contacts
* Survey date and time
* Property status — freehold, leasehold or commonhold
* Occupancy — occupied or vacant. If vacant, source of keys
* Extent of survey, e.g. full structural + services reports
* Specialists in attendance, e.g. electrician, heating engineer, etc.
* Age of property (approx. if very dated or no records)
* Disposition of rooms, i.e. number of bedrooms, etc.
* Floor plans and elevations if available
* Elevation (flooding potential) and orientation (solar effect)
* Estate/garden area and disposition if appropriate
* Means of access — roads, pedestrian only, rights of way

Survey tools and equipment:

* Drawings + estate agent’s particulars if available
* Notebook and pencil/pen
* Binoculars and a camera with flash facility
* Tape measure, spirit level and plumb line
* Other useful tools, to include small hammer, torch, screwdriver and manhole lifting irons
* Moisture meter
* Ladders — eaves access and loft access
* Sealable bags for taking samples, e.g. wood rot, asbestos, etc.
Estate and garden:
* Location and establishment of boundaries
* Fences, gates and hedges — material, condition and suitability
* Trees — type and height, proximity to building
* Pathways and drives — material and condition
* Outbuildings — garages, sheds, greenhouses, barns, etc.
* Proximity of water courses

Roof:
* Tile type, treatment at ridge, hips, verge and valleys
* Age of covering, repairs, replacements, renewals, general condition, defects and growths
* Eaves finish, type and condition
* Gutters — material, size, condition, evidence of leakage
* Rainwater downpipes as above
* Chimney — dpcs, flashings, flaunching, pointing, signs of movement
* Flat roofs — materials, repairs, abutments, flashings and drainage

Walls:
* Materials — type of brick, rendering, cladding, etc., condition and evidence of repairs
* Solid or cavity construction, if cavity extent of insulation and type
* Pointing of masonry, painting of rendering and cladding
* Air brick location, function and suitability
* Dpc, material and condition, position relative to ground level
* Windows and doors, material, signs of rot or damage, original or replacement, frame seal
* Settlement — signs of cracking, distortion of window and door frames — specialist report

Drainage:
A building surveyor may provide a general report on the condition of the drainage and sanitation installation. However, a full test for leakage and determination of self-cleansing and flow conditions to include fibre-optic scope examination is undertaken as a specialist survey.
Roof space:
* Access to all parts, construction type — traditional or trussed
* Evidence of moisture due to condensation — ventilation at eaves, ridge, etc.
* Evidence of water penetration — chimney flashings, abutments and valleys
* Insulation — type and quantity
* Party wall in semi-detached and terraced dwellings — suitability as fire barrier
* Plumbing — adequacy of storage cistern, insulation, overflow function

Floors:
* Construction — timber, pre-cast or cast insitu concrete? Finish condition?
* Timber ground floor — evidence of dampness, rot, woodworm, ventilation, dpcs
* Timber upper floor stability, ie. wall fixing, strutting, joist size, woodworm, span and loading

Stairs:
* Type of construction and method of fixing — built insitu or preformed
* Soffit, re. fire protection (plasterboard?)
* Balustrading — suitability and stability
* Safety — adequate screening, balusters, handrail, pitch angle, open tread, tread wear

Finishes:
* General décor, i.e. paint and wallpaper condition — damaged, faded
* Woodwork/joinery — condition, defects, damage, paintwork
* Plaster — ceiling (plasterboard or lath and plaster?) — condition and stability
* Plaster — walls — render and plaster or plasterboard, damage and quality of finish
* Staining — plumbing leaks (ceiling), moisture penetration (wall openings), rising damp
* Fittings and ironmongery — adequacy and function, weather exclusion and security

Supplementary enquiries should determine the extent of additional building work, particularly since the planning threshold of 1948. Check for planning approvals, permitted development and Building Regulation approvals, exemptions and completion certificates.

Services — apart from a cursory inspection to ascertain location and suitability of system controls, these areas are highly specialised and should be surveyed by those appropriately qualified.
A method statement precedes preparation of the project programme and contains the details necessary for construction of each element of a building. It is prepared from information contained in the contract documents—see page 19. It also functions as a brief for site staff and operatives in sequencing activities, indicating resource requirements and determining the duration of each element of construction. It complements construction programming by providing detailed analysis of each activity.

A typical example for foundation excavation could take the following format:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Output/hour</th>
<th>Method</th>
<th>Plant</th>
<th>Labour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strip site for excavation</td>
<td>50 m²/hr</td>
<td>Excav. to reduced level over construction area - JCB4 + face shovel. Topsoil retained on site.</td>
<td>JCB4 Tipper truck.</td>
<td>Excav. driver +2 labourers. Truck driver.</td>
</tr>
<tr>
<td>Excavate foundations</td>
<td>15 m³/hr</td>
<td>Excavate foundation to trench to required depth - JCB4 + back actor. Surplus spoil removed from site.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quantity

- Strip site for excavation: 300 m²
- Excavate for foundations: 60 m³
| No. | Activity | Week No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | | | |
|---|
| 1 | Set up site | | | | | | | | | | | |
| 2 | Level site and fill | | | | | | | | | | | |
| 3 | Excavate founds | | | | | | | | | | | |
| 4 | Conc. foundations | | | | | | | | | | | |
| 5 | Brickwork < dpc | | | | | | | | | | | |
| 6 | Ground floor | | | | | | | | | | | |
| 7 | Drainage | | | | | | | | | | | |
| 8 | Scaffold | | | | | | | | | | | |
| 9 | Brickwork > dpc | | | | | | | | | | | |
| 10 | 1st. floor carcass | | | | | | | | | | | |
| 11 | Roof framing | | | | | | | | | | | |
| 12 | Roof tiling | | | | | | | | | | | |
| 13 | 1st. floor deck | | | | | | | | | | | |
| 14 | Partitions | | | | | | | | | | | |
| 15 | 1st. fix joiner | | | | | | | | | | | |
| 16 | 1st. fix services | | | | | | | | | | | |
| 17 | Glazing | | | | | | | | | | | |
| 18 | Plaster & screed | | | | | | | | | | | |
| 19 | 2nd. fix joiner | | | | | | | | | | | |
| 20 | 2nd. fix services | | | | | | | | | | | |
| 21 | Paint & dec. | | | | | | | | | | | |
| 22 | Floor finishes | | | | | | | | | | | |
| 23 | Fittings & fixtures | | | | | | | | | | | |
| 24 | Clean & make good | | | | | | | | | | | |
| 25 | Roads & landscape | | | | | | | | | | | |
| 26 | Clear site | | | | | | | | | | | |
| 27 | Commissioning | | | | | | | | | | | |

DATE: W/E

- **pin**
- **string line**
- **progress to date**
- **planned completion**

PROJECT TWO STOREY OFFICE AND WORKSHOP

CONTRACT No. 1234

MONTH/YEAR

COMMUNICATING INFORMATION—BAR CHART PROGRAMME
<table>
<thead>
<tr>
<th>Material</th>
<th>Weight (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRICKS, BLOCKS and PAVING —</td>
<td></td>
</tr>
<tr>
<td>Clay brickwork — 102.5 mm</td>
<td></td>
</tr>
<tr>
<td>low density</td>
<td>205</td>
</tr>
<tr>
<td>medium density</td>
<td>221</td>
</tr>
<tr>
<td>high density</td>
<td>238</td>
</tr>
<tr>
<td>Calcium silicate brickwork — 102.5 mm</td>
<td>205</td>
</tr>
<tr>
<td>Concrete blockwork, aerated</td>
<td>78</td>
</tr>
<tr>
<td>… … … … … … lightweight aggregate</td>
<td>129</td>
</tr>
<tr>
<td>Concrete flagstones (50 mm)</td>
<td>115</td>
</tr>
<tr>
<td>Glass blocks (100 mm thick) 150×150</td>
<td>98</td>
</tr>
<tr>
<td>… … … … … … … … … … … … 200×200</td>
<td>83</td>
</tr>
<tr>
<td>ROOFING —</td>
<td></td>
</tr>
<tr>
<td>Thatching (300 mm thick)</td>
<td>40.00</td>
</tr>
<tr>
<td>Tiles — plain clay</td>
<td>63.50</td>
</tr>
<tr>
<td>… — plain concrete</td>
<td>93.00</td>
</tr>
<tr>
<td>… single lap. concrete</td>
<td>49.00</td>
</tr>
<tr>
<td>Tile battens (50×25) and felt underlay</td>
<td>7.70</td>
</tr>
<tr>
<td>Bituminous felt underlay</td>
<td>1.00</td>
</tr>
<tr>
<td>Bituminous felt, sanded topcoat</td>
<td>2.70</td>
</tr>
<tr>
<td>3 layers bituminous felt</td>
<td>4.80</td>
</tr>
<tr>
<td>HD/PE breather membrane underlay</td>
<td>0.20</td>
</tr>
<tr>
<td>SHEET MATERIALS —</td>
<td></td>
</tr>
<tr>
<td>Aluminium (0.9 mm)</td>
<td>2.50</td>
</tr>
<tr>
<td>Copper (0.9 mm)</td>
<td>4.88</td>
</tr>
<tr>
<td>Cork board (standard) per 25 mm thickness</td>
<td>4.33</td>
</tr>
<tr>
<td>… … … … … … (compressed) … … … … … …</td>
<td>9.65</td>
</tr>
<tr>
<td>Hardboard (3.2 mm)</td>
<td>3.40</td>
</tr>
<tr>
<td>Glass (3 mm)</td>
<td>7.30</td>
</tr>
<tr>
<td>Lead (1.32 mm — code 3)</td>
<td>14.97</td>
</tr>
<tr>
<td>… (3.15 mm — code 7)</td>
<td>35.72</td>
</tr>
<tr>
<td>Particle board/chipboard (12 mm)</td>
<td>9.26</td>
</tr>
<tr>
<td>… … … … … … … … (22 mm)</td>
<td>16.82</td>
</tr>
<tr>
<td>Planking, softwood strip flooring (ex. 25 mm)</td>
<td>11.20</td>
</tr>
<tr>
<td>… … … … … … … … hardwood … … … … … …</td>
<td>16.10</td>
</tr>
<tr>
<td>Plasterboard (9.5 mm)</td>
<td>8.30</td>
</tr>
<tr>
<td>… … … … … … (12.5 mm)</td>
<td>11.00</td>
</tr>
<tr>
<td>… … … … … … (19 mm)</td>
<td>17.00</td>
</tr>
<tr>
<td>Plywood per 25 mm</td>
<td>1.75</td>
</tr>
<tr>
<td>PVC floor tiling (2.5 mm)</td>
<td>3.90</td>
</tr>
<tr>
<td>Strawboard (25 mm)</td>
<td>9.80</td>
</tr>
<tr>
<td>Weatherboarding (20 mm)</td>
<td>7.68</td>
</tr>
<tr>
<td>Woodwool (25 mm)</td>
<td>14.50</td>
</tr>
</tbody>
</table>
Typical Weights of Building Materials and Densities

<table>
<thead>
<tr>
<th>Material</th>
<th>Weight (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSULATION</td>
<td></td>
</tr>
<tr>
<td>Glass fibre thermal (100 mm)</td>
<td>2.00</td>
</tr>
<tr>
<td>... acoustic</td>
<td>4.00</td>
</tr>
<tr>
<td>APPLIED MATERIALS</td>
<td></td>
</tr>
<tr>
<td>Asphalte (18 mm)</td>
<td>42</td>
</tr>
<tr>
<td>Plaster, 2 coat work</td>
<td>22</td>
</tr>
<tr>
<td>STRUCTURAL TIMBER</td>
<td></td>
</tr>
<tr>
<td>Rafters and Joists (100 × 50 @ 400 c/c)</td>
<td>5.87</td>
</tr>
<tr>
<td>Floor joists (225 × 50 @ 400 c/c)</td>
<td>14.93</td>
</tr>
</tbody>
</table>

Densities -

<table>
<thead>
<tr>
<th>Material</th>
<th>Approx. Density (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>1440</td>
</tr>
<tr>
<td>Concrete (aerated)</td>
<td>640</td>
</tr>
<tr>
<td>... (broken brick)</td>
<td>2000</td>
</tr>
<tr>
<td>... (natural aggregates)</td>
<td>2300</td>
</tr>
<tr>
<td>... (no-fines)</td>
<td>1760</td>
</tr>
<tr>
<td>... (reinforced)</td>
<td>2400</td>
</tr>
<tr>
<td>Metals</td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td>2770</td>
</tr>
<tr>
<td>Copper</td>
<td>8730</td>
</tr>
<tr>
<td>Lead</td>
<td>11325</td>
</tr>
<tr>
<td>Steel</td>
<td>7849</td>
</tr>
<tr>
<td>Timber (softwood/pine)</td>
<td>480 (average)</td>
</tr>
<tr>
<td>... ... (hardwood, eg. maple, teak, oak)</td>
<td>720</td>
</tr>
<tr>
<td>Water</td>
<td>1000</td>
</tr>
</tbody>
</table>

Refs. BS 648: Schedule of Weights of Building Materials.
BS 6399-1: Loadings for buildings. Code of Practice for Dead and Imposed Loads.
Drawings—these are the major means of communication between the designer and the contractor as to what, where and how the proposed project is to be constructed.

Drawings should therefore be clear, accurate, contain all the necessary information and be capable of being easily read.

To achieve these objectives most designers use the symbols and notations recommended in BS 1192-5 and BS EN ISO 7519 to which readers should refer for full information.

Typical Examples

- **outlines**

- **dimension and hatching lines**

- **hidden detail**

- **drain and pipe lines**

- **centre lines**

- **modular and coordinating dimension lines**

- **work size dimension lines**

- **controlling and grid lines**

LINES

DOORS

- **single door single swing**

- **double door single swing**

- **single door double swing**

- **double door double swing**

- **folding doors side hung**

- **folding doors centre hung**
Hatchings ~ the main objective is to differentiate between the materials being used thus enabling rapid recognition and location. Whichever hatchings are chosen they must be used consistently throughout the whole set of drawings. In large areas it is not always necessary to hatch the whole area.

Symbols ~ these are graphical representations and should wherever possible be drawn to scale but above all they must be consistent for the whole set of drawings and clearly drawn.

Typical Examples

- **soil**
- **hardcore**
- **mass concrete**
- **reinforced concrete**
- **brickwork**
- **blockwork**
- **stonework**
- **unwrot timber**
- **wrot timber**

MATERIALS

- **hanging edge**
- **side hung opening out**
- **top hung opening out**
- **bottom hung opening in**
- **pivot**
- **horizontal pivot**
- **double hung or sliding sash**

WINDOWS
<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainwater pipe</td>
<td></td>
<td>Distribution board</td>
<td></td>
</tr>
<tr>
<td>Gully</td>
<td></td>
<td>Electricity meter</td>
<td></td>
</tr>
<tr>
<td>Inspection chambers</td>
<td></td>
<td>Switched socket outlet</td>
<td></td>
</tr>
<tr>
<td>Boiler</td>
<td></td>
<td>Switch</td>
<td></td>
</tr>
<tr>
<td>Sink</td>
<td></td>
<td>Two way switch</td>
<td></td>
</tr>
<tr>
<td>Bath</td>
<td></td>
<td>Pendant switch</td>
<td></td>
</tr>
<tr>
<td>Wash basin</td>
<td></td>
<td>Filament lamp</td>
<td></td>
</tr>
<tr>
<td>Shower unit</td>
<td></td>
<td>Fluorescent lamp</td>
<td></td>
</tr>
<tr>
<td>Urinal</td>
<td></td>
<td>Bed</td>
<td></td>
</tr>
<tr>
<td>Water closet</td>
<td></td>
<td>Table and chairs</td>
<td></td>
</tr>
</tbody>
</table>

Typical Component, Fitment and Electrical Symbols
NB dimensions and full annotation omitted for clarity

TYPICAL PLAN OF A TWO BEDROOM BUNGALOW
Principal legislation:

Procedure:

Outline Planning Application — This is necessary for permission to develop a proposed site. The application should contain:

An application form describing the work.
A site plan showing adjacent roads and buildings (1:2500).
A block plan showing the plot, access and siting (1:500).
A certificate of land ownership.

Detail or Full Planning Application — This follows outline permission and is also used for proposed alterations to existing buildings.

It should contain: details of the proposal, to include trees, materials, drainage and any demolition.

Site and block plans (as above). A certificate of land ownership. Building drawings showing elevations, sections, plans, material specifications, access, landscaping, boundaries and relationship with adjacent properties (1:100).

Permitted Developments — Small developments may be exempt from formal application. These include house extensions <15% of the original volume (vol. in 1948 for older houses), <10% for terraced properties. Other exceptions include porches <2m² floor area, <3m in height and over 2m from the boundary.

Note: All developments are subject to Building Regulation approval.

Certificates of ownership — Article 7 of the Town & Country Planning (General Development Procedure) Order 1995:

Cert. A — States the applicant is sole site freeholder.
Cert. B — States the applicant is part freeholder or prospective purchaser and all owners of the site know of the application.
Cert. C — As Cert. B, but the applicant is only able to ascertain some of the other land owners.
Cert. D — As Cert. B, but the applicant cannot ascertain any owners of the site other than him/herself.
PLANNING APPLICATION

1. NAME AND ADDRESS OF APPLICANT

Post Code

Tel. No.

2. NAME AND ADDRESS OF AGENT (If Used)

Post Code

Tel. No.

3. ADDRESS OF PROPERTY TO BE ALTERED OR EXTENDED

4. OWNERSHIP
Please indicate applicants interest in the property and complete the appropriate Certificate under Article 7.
Freeholder
Leaseholder
Purchaser
Other

5. BRIEF DESCRIPTION OF WORKS (include any demolition work)

6. DESCRIPTION OF EXTERNAL MATERIALS

7. ACCESS AND PARKING
Will your proposal affect? Please tick appropriate boxes
Vehicular Access
Yes ☐ No ☐
A Public Right of Way
Yes ☐ No ☐
Existing Parking
Yes ☐ No ☐

8. DRAINAGE
a. Please indicate method of Surface Water Disposal

b. Please indicate method of Foul Water Disposal
Please tick one box
Mains Sewer ☐ Septic Tank ☐
Cesspit ☐ Other ☐

9. TREES
Does the proposal involve the felling of any trees?
Please tick box
Yes ☐ No ☐
If yes, please show details on plans

10. PLEASE SIGN AND DATE THIS FORM BEFORE SUBMITTING

I/we hereby apply for Full Planning Permission for the development described above and shown on the accompanying plans.
Signed ____________________________ Date ____________________________

Date

On behalf of (if agent) ____________________________
Use this form to apply for Planning Permission for:-

Outline Permission
Full Permission
Approval of Reserved Matters
Renewal of Temporary Permission
Change of Use

Please return:-

* 6 copies of the Form
* 6 copies of the Plans
* a Certificate under Article 7
* the correct fee

DATE RECEIVED

1. NAME AND ADDRESS OF APPLICANT

__
__
__
Post Code ___________________ Post Code ___________________

Day Tel. No. _____________ Fax No. _____________ Email: _______________________

2. NAME AND ADDRESS OF AGENT (If Used)

__
__
__
Post Code ___________________ Post Code ___________________

Tel. No. _____________ Fax No. _____________ Email: _______________________

3. ADDRESS OR LOCATION OF LAND TO WHICH APPLICATION RELATES

__
__
__
State Site Area _________________ Hectares
This must be shown edged in Red on the site plan

4. OWNERSHIP

Freeholder ☐ Other ☐
Leaseholder ☐ Purchaser ☐

Any adjoining land owned or controlled and not part of application must be edged Blue on the site plan

5. WHAT ARE YOU APPLYING FOR? Please tick one box and then answer relevant questions.

☐ Outline Planning Permission Which of the following are to be considered?
☐ Siting ☐ Design ☐ Appearance ☐ Access ☐ Landscaping

☐ Full Planning Permission/Change of Use

☐ Approval of Reserved Matters following Outline Permission.
O/P No. _____________ Date__________ No. of Condition this application refers to: ____________

☐ Continuance of Use without complying with a condition of previous permission
P/P No. _____________ Date__________ No. of Condition this application relates to: ____________

☐ Permission for Retention of works.
Date of Use of land or when buildings or works were constructed: _____ Length of temporary permission: _____
Is the use temporary or permanent? __________ No. of previous temporary permission if applicable: __________

6. BRIEF DESCRIPTION OF PROPOSED DEVELOPMENT

Please indicate the purpose for which the land or buildings are to be used.__
__
__
7. NEW RESIDENTIAL DEVELOPMENTS. Please answer the following if appropriate:

What type of building is proposed? __

No. of dwellings: ________________ No. of storeys: ________________ No. of Habitable rooms: _______________

No. of Garages: _________________ No. of Parking Spaces: ________________ Total Grass Area of all buildings: _______

How will surface water be disposed of? __

How will foul sewage be dealt with? __

8. ACCESS

Does the proposed development involve any of the following? Please tick the appropriate boxes.

New access to a highway
 □ Pedestrian □ Vehicular

Alteration of an existing highway
 □ Pedestrian □ Vehicular

The felling of any trees
 □ Yes □ No

If you answer Yes to any of the above, they should be clearly indicated on all plans submitted.

9. BUILDING DETAIL

Please give details of all external materials to be used, if you are submitting them at this stage for approval.

__

__

List any samples that are being submitted for consideration. __

__

10. LISTED BUILDINGS OR CONSERVATION AREA

Are any Listed buildings to be demolished or altered? □ Yes □ No

If Yes, then Listed Building Consent will be required and a separate application should be submitted.

Are any non listed buildings within a Conservation Area to be demolished? □ Yes □ No

If Yes, then Conservation Area consent will be required to demolish. Again, a separate application should be submitted.

11. NOTES

A special Planning Application Form should be completed for all applications involving Industrial, Warehousing, Storage, or Shopping development.

An appropriate Certificate must accompany this application unless you are seeking approval to Reserved Matters.

A separate application for Building Regulation approval is also required.

Separate applications may also be required if the proposals relate to a Listed Building or non-listed building within a Conservation Area.

12. PLEASE SIGN AND DATE THIS FORM BEFORE SUBMITTING

I/We hereby apply for Planning Permission for the development described above and shown on the accompanying plans.

Signed __
TOWN AND COUNTRY PLANNING ACT – Article 7

CERTIFICATE A For Freehold Owner (or his/her Agent)

I hereby certify that:-

1. No person other than the applicant was an owner of any part of the land to which the application relates at the beginning of the period of 21 days before the date of the accompanying application.

2. *Either (i) None of the land to which the application relates constitutes or forms part of an agricultural holding:

 *or (ii) *(I have) (the applicant has) given the requisite notice to every person other than *(myself) (himself) (herself) who, 21 days before the date of the application, was a tenant of any agricultural holding any part of which was comprised in the land to which the application relates, viz:-

 Name and Address of Tenant...
 ..
 ... Signed Date..........................

 Date of Service of Notice... *On Behalf of ...

CERTIFICATE B For Part Freehold Owner or Prospective Purchaser (or his/her Agent) able to ascertain all the owners of the land

I hereby certify that:-

1. *(I have) (the applicant has) given the requisite notice to all persons other than (myself) (the applicant) who, 21 days before the date of the accompanying application were owners of any part of the land to which the application relates, viz:-

 Name and Address of Owner ..
 ..
 ... Date of Service of Notice

2. *Either (i) None of the land to which the application relates constitutes or forms part of an agricultural holding:

 *or (ii) *(I have) (the applicant has) given the requisite notice to every person other than *(myself) (himself) (herself) who, 21 days before the date of the application, was a tenant of any agricultural holding any part of which was comprised in the land to which the application relates, viz:-

 Name and Address of Tenant..
 ..
 ... Signed Date..........................
Modular Coordination ~ a module can be defined as a basic dimension which could for example form the basis of a planning grid in terms of multiples and submultiples of the standard module.

Typical Modular Coordinated Planning Grid ~

Let $M =$ the standard module

![Diagram of Modular Grids]

Structured Grid ~ used to locate structural components such as beams and columns.

Planning Grid ~ based on any convenient modular multiple for regulating space requirements such as rooms.

Controlling Grid ~ based on any convenient modular multiple for location of internal walls, partitions etc.

Basic Module Grid ~ used for detail location of components and fittings.

All the above grids, being based on a basic module, are contained one within the other and are therefore interrelated. These grids can be used in both the horizontal and vertical planes thus forming a three dimensional grid system. If a first preference numerical value is given to M dimensional coordination is established — see next page.
Dimensional Coordination – the practical aims of this concept are to:

1. Size components so as to avoid the wasteful process of cutting and fitting on site.
2. Obtain maximum economy in the production of components.
3. Reduce the need for the manufacture of special sizes.
4. Increase the effective choice of components by the promotion of interchangeability.

BS 6750 specifies the increments of size for coordinating dimensions of building components thus:

<table>
<thead>
<tr>
<th>Preference</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (mm)</td>
<td>300</td>
<td>100</td>
<td>50</td>
<td>25</td>
</tr>
</tbody>
</table>

The 3rd and 4th preferences having a maximum of 300 mm.

Dimensional Grids – the modular grid network as shown on page 44 defines the space into which dimensionally coordinated components must fit. An important factor is that the component must always be undersized to allow for the joint which is sized by the obtainable degree of tolerance and site assembly:

Controlling Lines, Zones and Controlling Dimensions – these terms can best be defined by example:
Construction Regulations - these are Statutory Instruments made under the Factories Acts of 1937 and 1961 and come under the umbrella of the Health and Safety at Work etc., Act 1974. They set out the minimum legal requirements for construction works and relate primarily to the health, safety and welfare of the workforce. The requirements contained within these documents must therefore be taken into account when planning construction operations and during the actual construction period. Reference should be made to the relevant document for specific requirements but the broad areas covered can be shown thus:

- Factories Acts 1937 and 1961
- Health and Safety at Work etc., Act 1974 governs powers of Inspectors regarding safe practices on sites together with contravention of the Construction Regulations.
- Management of Health and Safety at Work Regulations 1999
- Duties of Implementation.
- The Construction (Design and Management) Regulations 1994 Application and management of Health and Safety at Work Regulations. Client responsibility for appointment of a "Project Co-ordinator" and "Principal Contractor".
- The Work at Height Regulations 2005. Scaffold, means of access, platform width, support, safety, guarding and inspection.
Objective — To create an all-party integrated and planned approach to health and safety throughout the duration of a construction project.

Administering Body — The Health and Safety Executive (HSE).

Scope — The CDM Regulations are intended to embrace all aspects of construction, with the exception of very minor works.

Responsibilities — The CDM Regulations apportion responsibility for health and safety issues to all parties involved in the construction process, ie. client, designer, planning supervisor and principal contractor.

Client — Appoints a planning supervisor and the principal contractor. Provides the planning supervisor with information on health and safety matters and ensures that the principal contractor has prepared an acceptable health and safety plan for the conduct of work. Ensures that a health and safety file is available.

Designer — Establishes that the client is aware of their duties. Considers the design implications with regard to health and safety issues, including an assessment of any perceived risks. Co-ordinates the work of the planning supervisor and other members of the design team.

Project Co-ordinator — Ensures that:
* a pre-tender, health and safety plan is prepared.
* the HSE are informed of the work.
* designers are liaising and conforming with their health and safety obligations.
* a health and safety file is prepared.
* contractors are of adequate competence with regard to health and safety matters and advises the client and principal contractor accordingly.

Principal Contractor — Develops a health and safety plan, collates relevant information and maintains it as the work proceeds. Administers day-to-day health and safety issues. Co-operates with the planning supervisor and designers, preparing risk assessments as required.
Health and Safety—Signs and Symbols (1)

Health and Safety at Work etc. Act 1974

The Health and Safety (Safety Signs and Signals) Regulations 1996

Management of Health and Safety at Work Regulations 1999 (Management Regulations)

Under these regulations, employers are required to provide and maintain health and safety signs conforming to European Directive 92/58 EEC:

- Risk Assessment — provide and maintain safety signs where there is a risk to health and safety, e.g. obstacles. Train staff to comprehend safety signs.
- Pictorial Symbols — pictograms alone are acceptable but supplementary text, e.g. FIRE EXIT, is recommended.
- Positioning of signs — primarily for location of fire exits, fire equipment, alarms, assembly points, etc. Not to be located where they could be obscured.
- Pipeline Identification — pipes conveying dangerous substances to be labelled with a pictogram on a coloured background conforming to BS 1710:1984 and BS 4800:1989. Non-dangerous substances should also be labelled for easy identification.

In addition, employers obligations include the need to provide:

PROHIBITION
- Red

WARNING
- Yellow

MANDATORY
- Blue

SAFE CONDITION
- Green
Typical Examples on Building Sites ~

PROHIBITION (Red)

- Authorised personnel only
- Children must not play on this site
- Smoking prohibited
- Access not permitted

WARNING (Yellow)

- Dangerous substance
- Flammable liquid
- Danger of electric shock
- Compressed gas

MANDATORY (Blue)

- Safety helmets must be worn
- Protective footwear must be worn
- Use ear protectors
- Protective clothing must be worn

SAFE CONDITIONS (Green)

- Emergency escapes
- Treatment area
- Safe area
Building Regulations

The Building Regulations - this is a Statutory Instrument which sets out the minimum performance standards for the design and construction of buildings and where applicable to the extension of buildings. The regulations are supported by other documents which generally give guidance on how to achieve the required performance standards. The relationship of these and other documents is set out below:

NB. The Building Regulations apply to England and Wales but not to Scotland and Northern Ireland which have separate systems of control.
Approved Documents - these are non-statutory publications supporting the Building Regulations prepared by the Office of the Deputy Prime Minister, approved by the Secretary of State and issued by The Stationery Office. The Approved Documents (ADs) have been compiled to give practical guidance to comply with the performance standards set out in the various regulations. They are not mandatory but in the event of a dispute they will be seen as tending to show compliance with the requirements of the Building Regulations. If other solutions are used to satisfy the requirements of the Regulations the burden of proving compliance rests with the applicant or designer.

| Approved Document A - STRUCTURE |
| Approved Document B - FIRE SAFETY |
| Approved Document C - SITE PREPARATION AND RESISTANCE TO CONTAMINANTS AND MOISTURE |
| Approved Document D - TOXIC SUBSTANCES |
| Approved Document E - RESISTANCE TO THE PASSAGE OF SOUND |
| Approved Document F - VENTILATION |
| Approved Document G - HYGIENE |
| Approved Document H - DRAINAGE AND WASTE DISPOSAL |
| Approved Document J - COMBUSTION APPLIANCES AND FUEL STORAGE SYSTEMS |
| Approved Document K - PROTECTION FROM FALLING, COLLISION AND IMPACT |
| Approved Document L - CONSERVATION OF FUEL AND POWER |
| Approved Document M - ACCESS TO AND USE OF BUILDINGS |
| Approved Document N - GLAZING - SAFETY IN RELATION TO IMPACT, OPENING AND CLEANING |
| Approved Document P - ELECTRICAL SAFETY |
| Approved Document Q - ELECTRONICS COMMUNICATIONS SERVICES |
| Approved Document S - SECURITY SYSTEMS |
| Approved Document T - TELECOMMUNICATIONS SYSTEMS |
| Approved Document to support Regulation 7 MATERIALS AND WORKMANSHIP |

* Drafted proposals
Example in the Use of Approved Documents

Problem: the sizing of suspended upper floor joists to be spaced at 400mm centres with a clear span of 3·600m for use in a two storey domestic dwelling.

Building Regulation A1: states that the building shall be constructed so that the combined dead, imposed and wind loads are sustained and transmitted by it to the ground —

(a) safely, and
(b) without causing such deflection or deformation of any part of the building, or such movement of the ground, as will impair the stability of any part of another building.

Approved Document A: guidance on sizing floor members can be found in 'Timber Intermediate Floors for Dwellings', published by the Timber Research And Development Association (TRADA), and BS 5268-2: Structural use of timber. Code of practice for permissible stress design, materials and workmanship.

Solution:

- uniformly distributed load not exceeding 1·5 kN/m²
- timber floor joists at 400%
- support wall
- support wall

Dead load (kN/m²) supported by joist excluding mass of joist: -

Floor finish – carpet 0·03
Flooring – 20 mm thick particle board 0·15
Ceiling – 9·5 mm thick plasterboard 0·08
Ceiling finish – 3 mm thick plaster 0·04

total dead load = 0·30 kN/m³

Dead loading is therefore in the 0·25 to 0·50 kN/m² band

From table on page 580 suitable joist sizes are: 38×200, 50×175, 63×175 and 75×150.

Final choice of section to be used will depend upon cost; availability; practical considerations and/or personal preference.
Building Control - unless the applicant has opted for control by a private approved inspector under The Building (Approved Inspectors etc.) Regulations 2000 the control of building works in the context of the Building Regulations is vested in the Local Authority. There are two systems of control namely the Building Notice and the Deposit of Plans. The sequence of systems is shown below:

Building Notice: written submission to LA with block plans and drainage details for new work. Not applicable for buildings designated under the Fire Precautions Act or the Fire Precautions (Workplace) Regs.

Notification only - approval not required.

Written or other notices to LA: -
- 48 hrs. before commencement
- 24 hrs. before excavations covered
- before foundations covered
- before damp course covered
- before site concrete covered
- before drains covered
- after drains completed
- after work completed and/or before occupation

Deposit of Plans: submission of full plans and statutory fee to LA.

Approval decision within 5 weeks or 2 months by mutual agreement.

Approval which can be partial or conditional by mutual agreement.

If required: Certificates of compliance by an approved person in the context of the structural design and the conservation of energy.

Notice of rejection.

Appeal to the Secretary of State.

Inspections carried out

Work acceptable to LA

Contravention found by building inspector

Contravention corrected

Applicant contests Notice and submits favourable second opinion to LA.

LA accepts submission and withdraws Section 36 Notice

LA rejects submission

Section 36 Notice served - work to be taken down or altered to comply

Application complies with the Section 36 Notice

Applicant can appeal to a Magistrate's Court within 70 days of a Section 36 Notice being served

NB. In some stages of the above sequence statutory fees are payable as set out in The Building (Local Authority Charges) Regulations 1998.
Building Regulations Exemptions

small detached buildings:
1. floor area < 15 m² not containing sleeping accommodation, or
2. floor area < 30 m² not containing sleeping accommodation, and either:
 - constructed substantially from non-combustible materials, or
 - located in excess of 1 m from the boundary

The guidance shown indicates the categories of buildings that do not normally require submission of a Building Notice or Deposit of Plans for approval by the Building Control Section of the Local Authority. However, they may still require planning permission – see page 39

boundary

porch*

carport*

conservatory*

greenhouse, unless for commercial use, i.e. retailing, packing or exhibiting

open sides

* single storey ground level additions which are not open to the house and are < 30 m² floor area, to include carport, covered yard, conservatory and porch.

Note: 1. a carport must be open on at least two sides.
2. conservatories must have fully glazed laminated or toughened glass, or translucent plastic roofs.
3. glazed doors and windows in a porch or conservatory as defined in Buildings Regulations, Approved Document N – see page 357
4. single storey additions should not impede escape from an upper floor window specified for emergency egress. Building Regulations, A.D.: B1 Section 2
BUILDING REGULATIONS APPLICATION

1. **NAME AND ADDRESS OF APPLICANT**
 Applicant will be invoiced on commencement of work.

2. **NAME AND ADDRESS OF AGENT (If Used)**

3. **ADDRESS OR LOCATION OF PROPOSED WORK**

4. **DESCRIPTION OF PROPOSED WORKS**

5. **IF NEW BUILDING OR EXTENSION PLEASE STATE PROPOSED USE**

6. **IF EXISTING BUILDING PLEASE STATE PRESENT USE**

7. **DRAINAGE**
 Please state means of:
 - Water Supply
 - Foul Water Disposal
 - Storm Water Disposal

8. **CONDITIONS**
 Do you consent to the Plans being passed subject to conditions where appropriate? Yes [] No []
 Do you agree to an extension of time if this is required by the Council? Yes [] No []

9. **COMPLETION CERTIFICATE**
 Do you wish the Council to issue a Completion Certificate upon satisfactory completion of the work? Yes [] No []

10. **FIRE PRECAUTIONS ACT 1971**
 Is the building intended to be used for commercial purposes? Yes [] No []

11. **FEE**
 Please state estimated cost of the work (at current market value) £___________. Amount of Fee submitted £___________.
 Has Planning Permission been sought? Yes [] No [] If Yes, please give Application No ______

12. **PLEASE SIGN AND DATE THIS FORM BEFORE SUBMITTING**
 I/we hereby give notice of intention to carry out the work set out above and deposit the attached drawings and documents in accordance with the requirements of Regulations 11 (1) (b). Also enclosed is the appropriate Plan Fee and I understand that a further Fee will be payable when the first inspection of work on site is made by the Local Authority.
 Signed ______________________ Date __________ On behalf of (if agent) ______________________

APPLICATION No

DATE RECEIVED
British Standards — these are publications issued by the British Standards Institution which give recommended minimum standards for materials, components, design and construction practices. These recommendations are not legally enforceable but some of the Building Regulations refer directly to specific British Standards and accept them as deemed to satisfy provisions. All materials and components complying with a particular British Standard are marked with the British Standards kitemark thus:

This symbol assures the user that the product so marked has been produced and tested in accordance with the recommendations set out in that specific standard. Full details of BS products and services can be obtained from Customer Services, BSI, 389 Chiswick High Road, London, W4 4BR. Standards applicable to building may be purchased individually or in modules, GBM 48, 49 and 50: Construction in General, Building Materials and Components and Building Installations and Finishing, respectively. British Standards are constantly under review and are amended, revised and rewritten as necessary, therefore a check should always be made to ensure that any standard being used is the current issue. There are over 1500 British Standards which are directly related to the construction industry and these are prepared in four formats:

1. **British Standards** — these give recommendations for the minimum standard of quality and testing for materials and components. Each standard number is prefixed BS.

2. **Codes of Practice** — these give recommendations for good practice relative to design, manufacture, construction, installation and maintenance with the main objectives of safety, quality, economy and fitness for the intended purpose. Each code of practice number is prefixed CP or BS.

3. **Draft for Development** — these are issued instead of a British Standard or Code of Practice when there is insufficient data or information to make firm or positive recommendations. Each draft number is prefixed DD. Sometimes given a BS number and suffixed DC, ie. Draft for public Comment.

4. **Published Document** — these are publications which cannot be placed into any one of the above categories. Each published document is numbered and prefixed PD.
European Standards — since joining the European Union (EU), trade and tariff barriers have been lifted. This has opened up the market for manufacturers of construction-related products, from all EU and European Economic Area (EEA) member states. Before 2004, the EU was composed of 15 countries: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxemburg, Netherlands, Portugal, Spain, Sweden and the United Kingdom. It now includes Cyprus, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, Slovakia and Slovenia. The EEA extends to: Iceland, Liechtenstein and Norway. Nevertheless, the wider market is not so easily satisfied, as regional variations exist. This can create difficulties where product dimensions and performance standards differ. For example, thermal insulation standards for masonry walls in Mediterranean regions need not be the same as those in the UK. Also, preferred dimensions differ across Europe in items such as bricks, timber, tiles and pipes.

European Standards are prepared under the auspices of Comité Européen de Normalisation (CEN), of which the BSI is a member. European Standards that the BSI have not recognised or adopted, are prefixed EN. These are EuroNorms and will need revision for national acceptance.

For the time being, British Standards will continue and where similarity with other countries’ standards and EN’s can be identified, they will run side by side until harmonisation is complete and approved by CEN.

eg. BS EN 295, replaces the previous national standard BS 65 — Vitrefied clay pipes for drains and sewers.

European Pre-standards are similar to BS Drafts for Development. These are known as ENV’s.

Some products which satisfy the European requirements for safety, durability and energy efficiency, carry the CE mark. This is not to be assumed a mark of performance and is not intended to show equivalence to the BS kitemark. However, the BSI is recognized as a Notified Body by the EU and as such is authorised to provide testing and certification in support of the CE mark.

International Standards — these are prepared by the International Organisation for Standardisation and are prefixed ISO. Many are compatible with and complement BS’s, eg. the ISO 9000 series has replaced BS 5750: Quality systems.
For manufacturers’ products to be compatible and uniformly acceptable in the European market, there exists a process for harmonising technical specifications. These specifications are known as harmonised European product standards (hENs), produced and administered by the Comité Européen de Normalisation (CEN). European Technical Approvals (ETAs) are also acceptable where issued by the European Organisation for Technical Approvals (EOTA). These standards are not a harmonisation of regulations. Whether or not the technical specification satisfies regional and national regulations is for local determination. However, for commercial purposes a technical specification should cover the performance characteristics required by regulations established by any member state in the European Economic Area (EEA).

CPD harmonises:

* methods and criteria for testing
* methods for declaring product performance
* methods and measures of conformity assessment

UK attestation accredited bodies include: BBA, BRE and BSI.

CE mark – a marking or labelling for conforming products. A ‘passport’ permitting a product to be legally marketed in any EEA. It is not a quality mark, e.g. BS Kitemark, but where appropriate this may appear with the CE marking.

CE marking – reproduced with kind permission of Rockwool Ltd.
CPI System of Coding – the Co-ordinated Project Information initiative originated in the 1970s in response to the need to establish a common arrangement of document and language communication, across the varied trades and professions of the construction industry.

However, it has only been effective in recent years with the publication of the Standard Method of Measurement 7th edition (SMM 7), the National Building Specification (NBS) and the Drawings Code. (Note: The NBS is also produced in CI/SfB format.)

The arrangement in all documents is a co-ordination of alphabetic sections, corresponding to elements of work, the purpose being to avoid mistakes, omissions and other errors which have in the past occurred between drawings, specification and bill of quantities descriptions.

The coding is a combination of letters and numbers, spanning 3 levels: -

Level 1 has 24 headings from A to Z (omitting I and 0). Each heading relates to part of the construction process, such as groundwork (D), Joinery (L), surface finishes (M), etc.

Level 2 is a sub-heading, which in turn is sub-grouped numerically into different categories. So for example, Surface Finishes is sub-headed: Plaster, Screeds, Painting, etc. These sub-headings are then extended further, thus Plaster becomes: Plastered/Rendered Coatings, Insulated Finishes, Sprayed Coatings etc.

Level 3 is the work section sub-grouped from level 2, to include a summary of inclusions and omissions.

As an example, an item of work coded M21 signifies: -

- M – Surface finishes
- 2 – Plastered coatings
- 1 – Insulation with rendered finish

The coding may be used to:

(a) simplify specification writing
(b) reduce annotation on drawings
(c) rationalise traditional taking-off methods
CI/SfB System ~ this is a coded filing system for the classification and storing of building information and data. It was created in Sweden under the title of Samarbetskommittén för Byggnadsskrivningar and was introduced into this country in 1961 by the RIBA. In 1968 the CI (Construction Index) was added to the system which is used nationally and recognized throughout the construction industry. The system consists of 5 sections called tables which are subdivided by a series of letters or numbers and these are listed in the CI/SfB index book to which reference should always be made in the first instance to enable an item to be correctly filed or retrieved.

Table 0 — Physical Environment
This table contains ten sections 0 to 9 and deals mainly with the end product (i.e. the type of building.) Each section can be further subdivided (e.g. 21, 22, et seq.) as required.

Table 1 — Elements
This table contains ten sections numbered (—) to (9—) and covers all parts of the structure such as walls, floors and services. Each section can be further subdivided (e.g. 31, 32 et seq.) as required.

Table 2 — Construction Form
This table contains twenty five sections lettered A to Z (O being omitted) and covers construction forms such as excavation work, blockwork, cast in situ work etc., and is not subdivided but used in conjunction with Table 3.

Table 3 — Materials
This table contains twenty five sections lettered a to z (l being omitted) and covers the actual materials used in the construction form such as metal, timber, glass etc., and can be subdivided (e.g. n1, n2 et seq.) as required.

Table 4 — Activities and Requirements
This table contains twenty five sections lettered (A) to (Z), (O being omitted) and covers anything which results from the building process such as shape, heat, sound, etc. Each section can be further subdivided ((M1), (M2) et seq.) as required.
2 SITE WORKS

SITE INVESTIGATIONS
SOIL INVESTIGATION
SOIL ASSESSMENT AND TESTING
SITE LAYOUT AND CONSIDERATIONS
SITE SECURITY
SITE LIGHTING AND ELECTRICAL SUPPLY
SITE OFFICE ACCOMMODATION
MATERIALS STORAGE
MATERIALS TESTING
SETTING OUT
LEVELS AND ANGLES
ROAD CONSTRUCTION
TUBULAR SCAFFOLDING AND SCAFFOLDING SYSTEMS
SHORING SYSTEMS
Site Analysis — prior to purchasing a building site it is essential to conduct a thorough survey to ascertain whether the site characteristics suit the development concept. The following guidance forms a basic checklist:

* Refer to Ordnance Survey maps to determine adjacent features, location, roads, facilities, footpaths and rights of way.
* Conduct a measurement survey to establish site dimensions and levels.
* Observe surface characteristics, i.e. trees, steep slopes, existing buildings, rock outcrops, wells.
* Inquire of local authority whether preservation orders affect the site and if it forms part of a conservation area.
* Investigate subsoil. Use trial holes and borings to determine soil quality and water table level.
* Consider flood potential, possibilities for drainage of water table, capping of springs, filling of ponds, diversion of streams and rivers.
* Consult local utilities providers for underground and overhead services, proximity to site and whether they cross the site.
* Note suspicious factors such as filled ground, cracks in the ground, subsidence due to mining and any cracks in existing buildings.
* Regard neighbourhood scale and character of buildings with respect to proposed new development.
* Decide on best location for building (if space permits) with regard to ‘cut and fill’, land slope, exposure to sun and prevailing conditions, practical use and access.
Site Investigation For New Works — the basic objective of this form of site investigation is to collect systematically and record all the necessary data which will be needed or will help in the design and construction processes of the proposed work. The collected data should be presented in the form of fully annotated and dimensioned plans and sections. Anything on adjacent sites which may affect the proposed works or conversely anything appertaining to the proposed works which may affect an adjacent site should also be recorded.

Typical Data Required —

- boundary hedges and/or fencing
- property boundary lines and location of site
- existing trees — type, girth, spread and height
- existing buildings
- details of above ground obstructions such as transmission lines
- contour lines
- planning or similar restrictions on proposed building or structure
- subsoil investigation data of soil types and properties together with ground water conditions
- Bench Marks and OS levels

orientation

N

trees and buildings on adjacent site

details of above

62.85

+ spot levels

63.00

contour lines

62.57

existing sewers

to Oldtown

A 3214

to Newtown
Purpose ~ primarily to obtain subsoil samples for identification, classification and ascertaining the subsoil's characteristics and properties. Trial pits and augered holes may also be used to establish the presence of any geological faults and the upper or lower limits of the water table.

General use ~
dry ground which requires little or no temporary support to sides of excavation.

Subsidiary use~
to expose and/or locate underground services.

Advantages ~
subsoil can be visually examined insitu — both disturbed and undisturbed samples can be obtained.

Trial pits and holes should be sited so that the subsoil samples will be representative but not interfering with works.
Site Investigation ~ this is an all embracing term covering every aspect of the site under investigation.

Soil Investigation ~ specifically related to the subsoil beneath the site under investigation and could be part of or separate from the site investigation.

Purpose of Soil Investigation ~

1. Determine the suitability of the site for the proposed project.
2. Determine an adequate and economic foundation design.
3. Determine the difficulties which may arise during the construction process and period.
4. Determine the occurrence and/or cause of all changes in subsoil conditions.

The above purposes can usually be assessed by establishing the physical, chemical and general characteristics of the subsoil by obtaining subsoil samples which should be taken from positions on the site which are truly representative of the area but are not taken from the actual position of the proposed foundations. A series of samples extracted at the intersection points of a 20,000 square grid pattern should be adequate for most cases.

Soil Samples ~ these can be obtained as disturbed or as undisturbed samples.

Disturbed Soil Samples ~ these are soil samples obtained from boreholes and trial pits. The method of extraction disturbs the natural structure of the subsoil but such samples are suitable for visual grading, establishing the moisture content and some laboratory tests. Disturbed soil samples should be stored in labelled air tight jars.

Undisturbed Soil Samples ~ these are soil samples obtained using coring tools which preserve the natural structure and properties of the subsoil. The extracted undisturbed soil samples are labelled and laid in wooden boxes for dispatch to a laboratory for testing. This method of obtaining soil samples is suitable for rock and clay subsoils but difficulties can be experienced in trying to obtain undisturbed soil samples in other types of subsoil.

The test results of soil samples are usually shown on a drawing which gives the location of each sample and the test results in the form of a hatched legend or section.
Depth of Soil Investigation ~ before determining the actual method of obtaining the required subsoil samples the depth to which the soil investigation should be carried out must be established. This is usually based on the following factors —

1. Proposed foundation type.
2. Pressure bulb of proposed foundation.
3. Relationship of proposed foundation to other foundations.

Typical Examples ~

Pressure bulbs of less than 20% of original loading at foundation level can be ignored — this applies to all foundation types.

For further examples see next page.
Typical Examples of Depth of Soil Investigation Considerations:

- **Foundations Close to One Another**
 - Pad foundation exerting a pressure of $p = \text{kgf/m}^2$
 - Raft foundation exerting a pressure of $p = \text{kgf/m}^2$

- **Different Foundation Types on the Same Site**
 - Overlap area double stressed which may necessitate soil investigation to a greater depth than $1.5b$
Soil Investigation Methods ~ method chosen will depend on several factors —

1. Size of contract
2. Type of proposed foundation.
3. Type of sample required.
4. Type of subsoils which may be encountered.

As a general guide the most suitable methods in terms of investigation depth are —

1. Foundations up to 3,000 deep — trial pits.
2. Foundations up to 30,000 deep — borings.
3. Foundations over 30,000 deep — deep borings and insitu examinations from tunnels and/or deep pits.

Typical Trail Pit Details ~

For details of other soil investigation methods see the next two pages
Boring Methods to Obtain Disturbed Soil Samples ~

1. Hand or Mechanical Auger — suitable for depths up to 3,000 using a 150 or 200mm diameter flight auger.
2. Mechanical Auger — suitable for depths over 3,000 using a flight or Cheshire auger — a liner or casing is required for most granular soils and may be required for other types of subsoil.
3. Sampling Shells — suitable for shallow to medium depth borings in all subsoils except rock.

Typical Details ~
Wash Boring ~ this is a method of removing loosened soil from a bore hole using a strong jet of water or bentonite which is a controlled mixture of fullers earth and water. The jetting tube is worked up and down inside the bore hole, the jetting liquid disintegrates the subsoil which is carried in suspension up the annular space to a settling tank. The settled subsoil particles can be dried for testing and classification. This method has the advantage of producing subsoil samples which have not been disturbed by the impact of sampling shells however it is not suitable for large gravel subsoils or subsoils which contain boulders.

Typical Wash Boring Arrangement ~

Mud-rotary Drilling ~ this is a method which can be used for rock investigations where bentonite is pumped in a continuous flow down hollow drilling rods to a rotating bit. The cutting bit is kept in contact with the bore face and the debris is carried up the annular space by the circulating fluid. Core samples can be obtained using coring tools.

Core Drilling ~ water or compressed air is jetted down the bore hole through a hollow tube and returns via the annular space. Coring tools extract continuous cores of rock samples which are sent in wooden boxes for laboratory testing.
Bore Hole Data — the information obtained from trial pits or bore holes can be recorded on a pro forma sheet or on a drawing showing the position and data from each trial pit or bore hole thus:

Bore holes can be taken on a 15,000 to 20,000 grid covering the whole site or in isolated positions relevant to the proposed foundation(s).

As a general guide the cost of site and soil investigations should not exceed 1% of estimated project costs.
Soil Assessment ~ prior to designing the foundations for a building or structure the properties of the subsoil(s) must be assessed. These processes can also be carried out to confirm the suitability of the proposed foundations. Soil assessment can include classification, grading, tests to establish shear strength and consolidation. The full range of methods for testing soils is given in BS 1377: Methods of test for soils for civil engineering purposes.

Classification ~ soils may be classified in many ways such as geological origin, physical properties, chemical composition and particle size. It has been found that the particle size and physical properties of a soil are closely linked and are therefore of particular importance and interest to a designer.

Particle Size Distribution ~ this is the percentages of the various particle sizes present in a soil sample as determined by sieving or sedimentation. BS 1377 divides particle sizes into groups as follows:-

Gravel particles ~ over 2mm
Sand particles ~ between 2mm and 0.06mm
Silt particles ~ between 0.06mm and 0.002mm
Clay particles ~ less than 0.002mm

The sand and silt classifications can be further divided thus:-

<table>
<thead>
<tr>
<th>CLAY</th>
<th>SILT</th>
<th>SAND</th>
<th>GRAVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>fine</td>
<td>medium</td>
<td>coarse</td>
<td>fine</td>
</tr>
<tr>
<td>0.002</td>
<td>0.006</td>
<td>0.02</td>
<td>0.06</td>
</tr>
</tbody>
</table>

The results of a sieve analysis can be plotted as a grading curve thus:-
Triangular Chart ~ this provides a general classification of soils composed predominantly from clay, sand and silt. Each side of the triangle represents a percentage of material component. Following laboratory analysis, a sample’s properties can be graphically plotted on the chart and classed accordingly.

e.g. Sand — 70%, Clay — 10% and Silt — 20% = Sandy Loam.

Note:

Silt is very fine particles of sand, easily suspended in water. Loam is very fine particles of clay, easily dissolved in water.
Site Soil Tests ~ these tests are designed to evaluate the density or shear strength of soils and are very valuable since they do not disturb the soil under test. Three such tests are the standard penetration test, the vane test and the unconfined compression test all of which are fully described in BS 1377: Methods of test for soils for civil engineering purposes.

Standard Penetration Test ~ this test measures the resistance of a soil to the penetration of a split spoon or split barrel sampler driven into the bottom of a bore hole. The sampler is driven into the soil to a depth of 150mm by a falling standard weight of 65kg falling through a distance of 760mm. The sampler is then driven into the soil a further 300mm and the number of blows counted up to a maximum of 50 blows. This test establishes the relative density of the soil.

<table>
<thead>
<tr>
<th>Typical Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-cohesive soils</td>
</tr>
<tr>
<td>No. of Blows</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>0 to 4</td>
</tr>
<tr>
<td>4 to 10</td>
</tr>
<tr>
<td>10 to 30</td>
</tr>
<tr>
<td>30 to 50</td>
</tr>
<tr>
<td>50+</td>
</tr>
</tbody>
</table>

Cohesive soils:

<table>
<thead>
<tr>
<th>No. of Blows</th>
<th>Relative Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 2</td>
<td>very soft</td>
</tr>
<tr>
<td>2 to 4</td>
<td>soft</td>
</tr>
<tr>
<td>4 to 8</td>
<td>medium</td>
</tr>
<tr>
<td>8 to 15</td>
<td>stiff</td>
</tr>
<tr>
<td>15 to 30</td>
<td>very stiff</td>
</tr>
<tr>
<td>30+</td>
<td>hard</td>
</tr>
</tbody>
</table>

The results of this test in terms of number of blows and amounts of penetration will need expert interpretation.
Vane Test — this test measures the shear strength of soft cohesive soils. The steel vane is pushed into the soft clay soil and rotated by hand at a constant rate. The amount of torque necessary for rotation is measured and the soil shear strength calculated as shown below.

This test can be carried out within a lined bore hole where the vane is pushed into the soil below the base of the bore hole for a distance equal to three times the vane diameter before rotation commences. Alternatively the vane can be driven or jacked to the required depth, the vane being protected within a special protection shoe, the vane is then driven or jacked a further 500mm before rotation commences.

Calculation of Shear Strength —

Formula: \(S = \frac{M}{K} \)

where \(S \) = shear value in kN/m\(^2\)

\(M \) = torque required to shear soil

\(K \) = constant for vane

\(= 3.66 \times 10^{-6} \)

\(D \) = vane diameter

stainless steel vane blades forming a cruciform in plan - height of vane to be equal to twice vane diameter
Unconfined Compression Test ~ this test can be used to establish the shear strength of a non-fissured cohesive soil sample using portable apparatus either on site or in a laboratory. The 75mm long x 38mm diameter soil sample is placed in the apparatus and loaded in compression until failure occurs by shearing or lateral bulging. For accurate reading of the trace on the recording chart a transparent viewfoil is placed over the trace on the chart.

Typical Apparatus Details~

Typical Results ~ showing compression strengths of clays:-

- Very soft clay ~ less than 25 kN/m²
- Soft clay ~ 25 to 50 kN/m²
- Medium clay ~ 50 to 100 kN/m²
- Stiff clay ~ 100 to 200 kN/m²
- Very stiff clay ~ 200 to 400 kN/m²
- Hard clay ~ more than 400 kN/m²

NB. The shear strength of clay soils is only half of the compression strength values given above.
Laboratory Testing ~ tests for identifying and classifying soils with regard to moisture content, liquid limit, plastic limit, particle size distribution and bulk density are given in BS 1377.

Bulk Density ~ this is the mass per unit volume which includes mass of air or water in the voids and is essential information required for the design of retaining structures where the weight of the retained earth is an important factor.

Shear Strength ~ this soil property can be used to establish its bearing capacity and also the pressure being exerted on the supports in an excavation. The most popular method to establish the shear strength of cohesive soils is the Triaxial Compression Test. In principle this test consists of subjecting a cylindrical sample of undisturbed soil (75mm long × 38mm diameter) to a lateral hydraulic pressure in addition to a vertical load. Three tests are carried out on three samples (all cut from the same large sample) each being subjected to a higher hydraulic pressure before axial loading is applied. The results are plotted in the form of Mohr's circles.

\[
\sigma_1 = \sigma_3 + \frac{L}{A}
\]

where \(L \) = load at failure

\(A \) = cross section area at failure (assuming sample remains cylindrical and of constant volume)

Shear strength, \(C \), and angle of internal friction, \(\phi \), are given by the Coulomb's line (best possible tangent line) and Mohr's circles (semi-circles).
Shear Strength - this can be defined as the resistance offered by a soil to the sliding of one particle over another. A simple method of establishing this property is the Shear Box Test in which the apparatus consists of two bottomless boxes which are filled with the soil sample to be tested. A horizontal shearing force (S) is applied against a vertical load (W) causing the soil sample to shear along a line between the two boxes.

Consolidation of Soil - this property is very important in calculating the movement of a soil under a foundation. The laboratory testing apparatus is called an Oedometer.

Typical Results -

Granular Soils - as load increases friction between particles increases therefore shear strength is increased.

Cohesive Soils - the very small particles develop no friction therefore shear strength remains constant.

Mixture of Soils - small angle of internal friction is developed as load increases.

75 mm dia. x 18 mm thick soil sample placed in a metal ring and capped with porous discs then placed in water filled tray and subjected to load.
General Considerations ~ before any specific considerations and decisions can be made regarding site layout a general appreciation should be obtained by conducting a thorough site investigation at the pre-tender stage and examining in detail the drawings, specification and Bill of Quantities to formulate proposals of how the contract will be carried out if the tender is successful. This will involve a preliminary assessment of plant, materials and manpower requirements plotted against the proposed time scale in the form of a bar chart (see page 32).

Access Considerations ~ this must be considered for both on and off site access. Routes to and from the site must be checked as to the suitability for transporting all the requirements for the proposed works. Access on site for deliveries and general circulation must also be carefully considered.

Typical Site Access Considerations ~

- paved areas and roads forming part of the contract - can these be constructed or partially completed at an early stage and used for site access and general circulation?
- temporary road(s) to ease site circulation and/or congestion - are these necessary or desirable? can the extra cost be justified?
- approach roads - are they suitable? if not what are the alternatives? are there any one way only systems? are right hand turns into the site allowed? what are the requirements for sight lines?
Storage Considerations ~ amount and types of material to be stored, security and weather protection requirements, allocation of adequate areas for storing materials and allocating adequate working space around storage areas as required. Siting of storage areas to reduce double handling to a minimum without impeding the general site circulation and/or works in progress.

Accommodation Considerations ~ number and type of site staff anticipated, calculate size and select units of accommodation and check to ensure compliance with the minimum requirements of the Construction (Health, Safety and Welfare) Regulations 1996. Select siting for offices to give easy and quick access for visitors but at the same time giving a reasonable view of the site, select siting for messroom and toilets to reduce walking time to a minimum without impeding the general site circulation and/or works in progress.

Temporary Services Considerations ~ what, when and where are they required? Possibility of having permanent services installed at an early stage and making temporary connections for site use during the construction period. Coordination with the various service undertakings is essential.

Plant Considerations ~ what plant, when and where is it required? Static or mobile plant? If static select the most appropriate position and provide any necessary hard standing. If mobile check on circulation routes for optimum efficiency and suitability. Provision of space and hard standing for on site plant maintenance if required.

Fencing and Hoarding Considerations ~ what is mandatory and what is desirable? Local vandalism record, type or types of fence and/or hoarding required. Possibility of using fencing which is part of the contract by erecting this at an early stage in the contract.

Safety and Health Considerations ~ check to ensure that all the above conclusions from the considerations comply with the minimum requirements set out in the various Construction Regulations and in the Health and Safety at Work etc., Act 1974.

For a typical site layout example see next page.
Site Security ~ the primary objectives of site security are —

1. Security against theft.
2. Security from vandals.
3. Protection from innocent trespassers.

The need for and type of security required will vary from site to site according to the neighbourhood, local vandalism record and the value of goods stored on site. Perimeter fencing, internal site protection and night security may all be necessary.

Typical Site Security Provisions ~
Hoardings ~ under the Highways Act 1980 a close boarded fence hoarding must be erected prior to the commencement of building operations if such operations are adjacent to a public footpath or highway. The hoarding needs to be adequately constructed to provide protection for the public, resist impact damage, resist anticipated wind pressures and adequately lit at night. Before a hoarding can be erected a licence or permit must be obtained from the local authority who will usually require 10 to 20 days notice. The licence will set out the minimum local authority requirements for hoardings and define the time limit period of the licence.

Typical Hoarding Details ~

- 200 x 75 softwood posts at 1.500%e
- 75 x 75 softwood sheeting rails fixed to posts
- 2.400 high x 1.200 wide external quality plywood sheets fixed to timber rails
- some local authorities require the facing to be painted a light colour

- 1.200 minimum
- footpath
- minimum working space 1.000
- ground level
- 150mm minimum mass concrete surround
- bulkhead night warning lights

900 minimum
Hoardings can be constructed using other materials such as a frame of scaffold tubing faced with corrugated sheeting. Return ends and access by means of a lockable gate or door may also be required.

100 x 50 raking struts at 2,000 £/c if required
75 x 75 sheeting rails fixed to posts
50 x 50 fixing stakes
100 x 100 precast concrete spurs set in mass concrete to project 1,000
150mm minimum mass concrete surround
All timber to be softwood G.S. grade

bulkhead night warning light
2.400 high x 1.200 wide external quality plywood or similar sheets fixed to timber rails
100 x 100 posts at 2,000 £/c
2.200
1.200 min.
900 min.
300 x 300 timber fender painted white
night warning lights

footway with ramps at each end out of sheet material decking on 125 x 50 joists at 450 £/c
Site Lighting

Site Lighting ~ this can be used effectively to enable work to continue during periods of inadequate daylight. It can also be used as a deterrent to would-be trespassers. Site lighting can be employed externally to illuminate the storage and circulation areas and internally for general movement and for specific work tasks. The types of lamp available range from simple tungsten filament lamps to tungsten halogen and discharge lamps. The arrangement of site lighting can be static where the lamps are fixed to support poles or mounted on items of fixed plant such as scaffolding and tower cranes. Alternatively the lamps can be sited locally where the work is in progress by being mounted on a movable support or hand held with a trailing lead. Whenever the position of site lighting is such that it can be manhandled it should be run on a reduced voltage of 110 V single phase as opposed to the mains voltage of 230 V.

To plan an adequate system of site lighting the types of activity must be defined and given an illumination target value which is quoted in lux (lx). Recommended minimum target values for building activities are:-

<table>
<thead>
<tr>
<th>Internal lighting</th>
<th>External lighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>general circulation</td>
<td>general circulation</td>
</tr>
<tr>
<td>materials handling</td>
<td>materials handling</td>
</tr>
<tr>
<td>5lx</td>
<td>10lx</td>
</tr>
<tr>
<td>general working areas</td>
<td>general working areas</td>
</tr>
<tr>
<td>15lx</td>
<td>15lx</td>
</tr>
<tr>
<td>concreting activities</td>
<td>concreting activities</td>
</tr>
<tr>
<td>50lx</td>
<td>50lx</td>
</tr>
<tr>
<td>carpentry and joinery</td>
<td>carpentry and joinery</td>
</tr>
<tr>
<td>bricklaying</td>
<td>bricklaying</td>
</tr>
<tr>
<td>100lx</td>
<td>100lx</td>
</tr>
<tr>
<td>plastering</td>
<td>plastering</td>
</tr>
<tr>
<td>painting and decorating</td>
<td>painting and decorating</td>
</tr>
<tr>
<td>200lx</td>
<td>200lx</td>
</tr>
<tr>
<td>site offices</td>
<td>site offices</td>
</tr>
<tr>
<td>300lx</td>
<td>300lx</td>
</tr>
</tbody>
</table>

Such target values do not take into account deterioration, dirt or abnormal conditions therefore it is usual to plan for at least twice the recommended target values. Generally the manufacturers will provide guidance as to the best arrangement to use in any particular situation but lamp requirements can be calculated thus:-

\[
\text{Total lumens required} = \frac{\text{area to be illuminated (m}^2\text{)} \times \text{target value (lx)}}{\text{utilisation factor 0.23 \{dispersive lights 0.27\}}}
\]

After choosing lamp type to be used :-

\[
\text{Number of lamps required} = \frac{\text{total lumens required}}{\text{lumen output of chosen lamp}}
\]
Typical Site Lighting Arrangement:

Area lighting using high mounted lamps:

- **Area of illumination**
- **Tungsten halogen lamps mounted on posts or mast supports**
- **Maximum 0.6 x height**
- **Maximum spacing 1.5 x height**
- **Limit of effective throw 4 x height**

Typical minimum heights for dispersive lamps:

- Fluorescent 40 to 125W: 2.500 m
- Tungsten filament 300W: 3.000 m

Area lighting using overhead dispersive lights suspended from a grid or from the structure:

- **Lamp fittings to be resistant to corrosion, rust and rain**
- **Lamps at a height of H above floor level**
- **Maximum spacing 1.5 x H**
- **0.75 H max.**

Typical minimum heights for dispersive lamps:

- Fluorescent 40 to 125W: 2.500 m
- Tungsten filament 300W: 3.000 m
Walkway and Local Lighting ~ to illuminate the general circulation routes bulkhead and/or festoon lighting could be used either on a standard mains voltage of 230 V or on a reduced voltage of 110 V. For local lighting at the place of work hand lamps with trailing leads or lamp fittings on stands can be used and positioned to give the maximum amount of illumination without unacceptable shadow cast.

Typical Walkway and Local Lighting Fittings ~

Site Lighting

BULKHEAD LAMP
(300 mm × 8 W fluorescent)

- Die-cast aluminium alloy body
- Water and weatherproof front glass
- Vandal resistant translucent polycarbonate diffuser
- White stove enamelled reflector
- Galvanised steel base

LAMP AND STAND
(110V tungsten filament)

- Sealed end to cable
- Rainproof lampholders
- 60W tungsten filament bulbs
- Weather resistant cable
- Weatherproof fitted plug
- Glass fibre shades or wire guards if required

FESTOON LIGHTING

- Weatherproof fitted plug
- Moulded rubber lampholder
- Fitted wire guard to 110V tungsten filament lamp

HAND HELD LAMP WITH TRAILING LEAD
Electrical Supply to Building Sites ~ a supply of electricity is usually required at an early stage in the contract to provide light and power to the units of accommodation. As the work progresses power could also be required for site lighting, hand held power tools and large items of plant. The supply of electricity to a building site is the subject of a contract between the contractor and the local area electricity company who will want to know the date when supply is required: site address together with a block plan of the site; final load demand of proposed building and an estimate of the maximum load demand in kilowatts for the construction period. The latter can be estimated by allowing 10W/m² of the total floor area of the proposed building plus an allowance for high load equipment such as cranes. The installation should be undertaken by a competent electrical contractor to ensure that it complies with all the statutory rules and regulations for the supply of electricity to building sites.

Typical Supply and Distribution Equipment ~

The units must be strong, durable and resistant to rain penetration with adequate weather seals to all access panels and doors. All plug and socket outlets should be colour coded: - 400V ~ red; 230V ~ blue; 110V ~ yellow.
Office Accommodation — the arrangements for office accommodation to be provided on site is a matter of choice for each individual contractor. Generally separate offices would be provided for site agent, clerk of works, administrative staff, site surveyors and sales staff.

The minimum requirements of such accommodation is governed by the Offices, Shops and Railway Premises Act 1963 unless they are:

1. Mobile units in use for not more than 6 months.
2. Fixed units in use for not more than 6 weeks.
3. Any type of unit in use for not more than 21 man hours per week.
4. Office for exclusive use of self employed person.
5. Office used by family only staff.

Sizing Example —

Office for site agent and assistant plus an allowance for 3 visitors. Assume an internal average height of 2.400.
Allow 3.7 m² minimum per person and 11.5 m³ minimum per person.
Minimum area = 5 × 3.7 = 18.5 m²
Minimum volume = 5 × 11.5 = 57.5 m³

Assume office width of 3.000 then minimum length required is
= \frac{57.5}{3 × 2.4} = 7.986 \text{ say } 8.000

Area check 3 × 8 = 24 m² which is > 18.5 m² :: satisfactory

Typical Example —

Portable cabin with four adjustable steel legs with attachments for stacking. Panelling of galvanised steel sheet and rigid insulation core. Plasterboard inner lining to walls and ceiling. Pyro-shield windows with steel shutters and a high security steel door.

Ref. Fire prevention on construction sites — the joint code of practice on protection from fire of construction sites and buildings undergoing renovation. Published by Construction Confederation, Loss Prevention Council and National Contractors Group.
The requirements for health and wellbeing of persons on construction sites are enforced by the Health and Safety Executive, through the Health and Safety at Work etc. Act 1974 and the Construction (Health, Safety and Welfare) Regulations 1996. The following minimum requirements apply and the numbers of persons on site were established by the Construction Regulations of 1966.

<table>
<thead>
<tr>
<th>Provision</th>
<th>Requirement</th>
<th>No of persons employed on site</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST AID</td>
<td>Box to be distinctively marked and in charge of responsible person.</td>
<td>5 to 50 — first aid boxes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 + first aid box and a person trained in first aid</td>
</tr>
<tr>
<td>AMBULANCES</td>
<td>Stretcher(s) in charge of responsible person</td>
<td>25 + notify ambulance authority of site details within 24 hours of employing more than 25 persons</td>
</tr>
<tr>
<td>FIRST AID ROOM</td>
<td>Used only for rest or treatment and in charge of trained person</td>
<td>If more than 250 persons employed on site each employer of more than 40 persons to provide a first aid room</td>
</tr>
<tr>
<td>SHELTER AND ACCOMMODATION FOR CLOTHING</td>
<td>All persons on site to have shelter and a place for changing, drying and depositing clothes. Separate facilities for male and female staff.</td>
<td>Up to 5 where possible a means of warming themselves and drying wet clothes 5 + adequate means of warming themselves and drying wet clothing</td>
</tr>
<tr>
<td>REST ROOM</td>
<td>Drinking water, means of boiling water, preparing and eating meals for all persons on site. Arrangements to protect non-smokers from tobacco smoke.</td>
<td>10 + facilities for heating food if hot meals are not available on site</td>
</tr>
<tr>
<td>WASHING FACILITIES</td>
<td>Washing facilities to be provided for all persons on site for more than 4 hours. Ventilated and lit. Separate facilities for male and female staff.</td>
<td>20 to 100 if work is to last more than 6 weeks — hot and cold or warm water, soap and towel. 100 + work lasting more than 12 months — 4 wash places + 1 for every 35 persons over 100</td>
</tr>
<tr>
<td>SANITARY FACILITIES</td>
<td>To be maintained, lit, ventilated and kept clean. Separate facilities for male and female staff.</td>
<td>Up to 100 — 1 convenience for every 25 persons 100 + convenience for every 35 persons</td>
</tr>
</tbody>
</table>
Site Storage ~ materials stored on site prior to being used or fixed may require protection for security reasons or against the adverse effects which can be caused by exposure to the elements.

Small and Valuable Items ~ these should be kept in a secure and lockable store. Similar items should be stored together in a rack or bin system and only issued against an authorised requisition.

Large or Bulk Storage Items ~ for security protection these items can be stored within a lockable fenced compound. The form of fencing chosen may give visual security by being of an open nature but these are generally easier to climb than the close boarded type of fence which lacks the visual security property.

Typical Storage Compound Fencing ~

Close boarded fences can be constructed on the same methods used for hoardings — see pages 82 & 83.

Alternative Fence Types ~ woven wire fence, strained wire fence, cleft chestnut pale fence, wooden palisade fence, wooden post and rail fence and metal fences — see BS 1722 for details.
Storage of Materials – this can be defined as the provision of adequate space, protection and control for building materials and components held on site during the construction process. The actual requirements for specific items should be familiar to students who have completed studies in construction technology at an introductory level but the need for storage and control of materials held on site can be analysed further :-

1. Physical Properties – size, shape, weight and mode of delivery will assist in determining the safe handling and stacking method(s) to be employed on site, which in turn will enable handling and storage costs to be estimated.

2. Organisation – this is the planning process of ensuring that all the materials required are delivered to site at the correct time, in sufficient quantity, of the right quality, the means of unloading is available and that adequate space for storage or stacking has been allocated.

3. Protection – building materials and components can be classified as durable or non-durable, the latter will usually require some form of weather protection to prevent deterioration whilst in store.

4. Security – many building materials have a high resale and/or usage value to persons other than those for whom they were ordered and unless site security is adequate material losses can become unacceptable.

5. Costs – to achieve an economic balance of how much expenditure can be allocated to site storage facilities the following should be taken into account :-

 a. Storage areas, fencing, racks, bins, etc.
 b. Protection requirements.
 c. Handling, transporting and stacking requirements.
 d. Salaries and wages of staff involved in storage of materials and components.
 e. Heating and/or lighting if required.
 f. Allowance for losses due to wastage, deterioration, vandalism and theft.
 g. Facilities to be provided for sub-contractors.

6. Control – checking quality and quantity of materials at delivery and during storage period, recording delivery and issue of materials and monitoring stock holdings.
Site Storage Space ~ the location and size(s) of space to be allocated for any particular material should be planned by calculating the area(s) required and by taking into account all the relevant factors before selecting the most appropriate position on site in terms of handling, storage and convenience. Failure to carry out this simple planning exercise can result in chaos on site or having on site more materials than there is storage space available.

Calculation of Storage Space Requirements ~ each site will present its own problems since a certain amount of site space must be allocated to the units of accommodation, car parking, circulation and working areas, therefore the amount of space available for materials storage may be limited. The size of the materials or component being ordered must be known together with the proposed method of storage and this may vary between different sites of similar building activities. There are therefore no standard solutions for allocating site storage space and each site must be considered separately to suit its own requirements.

Typical Examples ~

Bricks — quantity = 15,200 to be delivered in strapped packs of 380 bricks per pack each being 1100 mm wide × 670 mm long × 850 mm high. Unloading and stacking to be by forklift truck to form 2 rows 2 packs high.

Area required :- number of packs per row = \(\frac{15,200}{380 \times 2} = 20 \)

length of row = \(10 \times 670 = 6,700 \)

width of row = \(2 \times 1100 = 2,200 \)

allowance for forklift approach in front of stack = 5,000 :: minimum brick storage area = 6,700 long × 7,200 wide

Timber — to be stored in open sided top covered racks constructed of standard scaffold tubes. Maximum length of timber ordered = 5,600. Allow for rack to accept at least 4 No. 300 mm wide timbers placed side by side then minimum width required = \(4 \times 300 = 1,200 \)

Minimum plan area for timber storage rack = 5,600 × 1,200

Allow for end loading of rack equal to length of rack :: minimum timber storage area = 11,200 long × 1,200 wide

Height of rack to be not more than 3 × width = 3,600

Areas for other materials stored on site can be calculated using the basic principles contained in the examples above.
Site Allocation for Materials Storage ~ the area and type of storage required can be determined as shown on pages 92 and 93 but the allocation of an actual position on site will depend on:-

1. Space available after areas for units of accommodation have been allocated.
3. Relationship of storage area(s) to activity area(s) — the distance between them needs to be kept as short as possible to reduce transportation needs in terms of time and costs to the minimum. Alternatively storage areas and work areas need to be sited within the reach of any static transport plant such as a tower crane.
4. Security — needs to be considered in the context of site operations, vandalism and theft.
5. Stock holding policy — too little storage could result in delays awaiting for materials to be delivered, too much storage can be expensive in terms of weather and security protection requirements apart from the capital used to purchase the materials stored on site.

Typical Example ~

NB. temporary site services omitted for clarity.
Bricks ~ may be supplied loose or strapped in unit loads and stored on timber pallets.

Blocks ~ may be supplied loose or in unit loads on timber pallets.

Roofing Tiles ~ may be supplied loose, in plastic wrapped packs or in unit loads on timber pallets.

Materials Storage
Drainage Pipes ~ supplied loose or strapped together on timber pallets

Gullies etc., should be stored upside down and supported to remain level.

Baths ~ stacked or nested vertically or horizontally on timber battens

Basins ~ stored similar to baths but not more than four high if nested one on top of another

Corrugated and Similar Sheet Materials ~ stored flat on a level surface and covered with a protective polythene or similar sheet material

Timber and Joinery Items ~ should be stored horizontally and covered but with provision for free air flow

Cement, Sand and Aggregates ~ for supply and storage details see pages 258 & 262
Site Tests - the majority of materials and components arriving on site will conform to the minimum recommendations of the appropriate British Standard and therefore the only tests which need be applied are those of checking quantity received against amount stated on the delivery note, ensuring quality is as ordered and a visual inspection to reject damaged or broken goods. The latter should be recorded on the delivery note and entered in the site records. Certain site tests can however be carried out on some materials to establish specific data such as the moisture content of timber which can be read direct from a moisture meter. Other simple site tests are given in the various British Standards to ascertain compliance with the recommendations such as the test for compliance with dimensional tolerance given in BS 3921 which covers clay bricks. This test is carried out by measuring a sample of 24 bricks taken at random from a delivered load thus:

Refs. BS 3921: Specification for clay bricks.
BS EN 772-3 and 772-7: Methods of test for masonry units.
BS EN 771-1: Specification for masonry units.
Site Test ~ apart from the test outlined on page 98 site tests on materials which are to be combined to form another material such as concrete can also be tested to establish certain properties which if not known could affect the consistency and/or quality of the final material.

Typical Example ~ Testing Sand for Bulking ~
this data is required when batching concrete by volume — test made at commencement of mixing and if change in weather

![Diagram of testing sand for bulking](image)

1. **Rule to measure depth of damp sand (say 150 mm)**
 - **Straight-sided container**
 - **Loosely placed damp sand sample**
2. **Sufficient clean water to half fill container**
 - **Damp sand sample removed from container and set aside**
3. **Rule to measure depth of saturated sand (say 124 mm)**
 - **Water**
 - **Saturated sand — sand placed in water 50% at a time and tamped with a rod to remove any air**
4. **Calculation**:
 \[
 \text{bulking} = \frac{\text{difference in height between damp & saturated sand}}{\text{depth of saturated sand}}
 \]
 \[
 \% \text{ bulking} = \frac{150 - 124}{124} \times 100 = \frac{26}{124} \times 100 = 20.96774 \%
 \]
 therefore volume of sand should be increased by 21% over that quoted in the specification
 NB. a given weight of saturated sand will occupy the same space as when dry but more space when damp
Silt Test for Sand ~ the object of this test is to ascertain the cleanliness of sand by establishing the percentage of silt present in a natural sand since too much silt will weaken the concrete.

1. measuring cylinder marked in millilitres
 make up salt water solution of 5ml salt to 500 ml water

2. add sand sample to salt water up to 50ml mark
 add more salt water solution up to 150ml mark and shake cylinder well

3. allow mixture to stand for 3 hours and measure height of silt
 salt water
 silt
 sand

4. Height of silt layer should not be more than 6ml or 6% of height of sand sample

Obtaining Samples for Laboratory Testing ~ these tests may be required for checking aggregate grading by means of a sieve test, checking quality or checking for organic impurities but whatever the reason the sample must be truly representative of the whole.

1. samples extracted by means of a scoop from at least ten different positions in the pile
 sample required:
 fine aggregate - 50 kg
 coarse aggregate - 200 kg

2. well mixed sample divided into four equal parts - opposite quarters are discarded - remainder of sample remixed and quartered - whole process is repeated until required size of sample is left.
 samples required:
 fine aggregate → 6mm - 3 kg
 → 10mm - 6 kg
 coarse aggregate → 20mm - 25 kg
 → 32mm - 50 kg
Concrete requires monitoring by means of tests to ensure that subsequent mixes are of the same consistency and this can be carried out on site by means of the slump test and in a laboratory by crushing test cubes to check that the cured concrete has obtained the required designed strength.

The slump cone is filled to a quarter depth and tamped 25 times — filling and tamping is repeated three more times until the cone is full and the top smoothed off. The cone is removed and the slump measured. For consistent mixes the slump should remain the same for all samples tested. Usual specification 50mm or 75mm slump.

Test Cubes - these are required for laboratory strength tests—concrete sample with trowelled surface and identification mark.

1. Sample taken from discharge outlet of mixer or from point of placing using random selection by means of a scoop.
2. Mould filled in three equal layers each layer well tamped with at least 35 strokes from the tamping bar.
3. Sample left in mould for 24 hours and covered with a damp sack or similar at a temperature of 4-4 to 21°C
4. Remove sample from mould and store in water at temperature of 10 to 21°C until required for testing.

Refs. BS EN 12350-2 (Slump) and BS EN 12390-1 (Cubes)
Non destructive testing of concrete. Also known as in-place or insitu tests.

Changes over time and in different exposures can be monitored.

Provides information on: strength insitu, voids, flaws, cracks and deterioration.

Rebound hammer test — attributed to Ernst Schmidt after he devised the impact hammer in 1948. It works on the principle of an elastic mass rebounding off a hard surface. Varying surface densities will affect impact and propagation of stress waves. These can be recorded on a numerical scale known as rebound numbers. It has limited application to smooth surfaces of concrete only. False results may occur where there are local variations in the concrete, such as a large piece of aggregate immediately below the impact surface. Rebound numbers can be graphically plotted to correspond with compressive strength.

Penetration or Windsor probe test — there are various interpretations of this test. It is a measure of the penetration of a steel alloy rod, fired by a predetermined amount of energy into concrete. In principle, the depth of penetration is inversely proportional to the concrete compressive strength. Several recordings are necessary to obtain a fair assessment and some can be discarded particularly where the probe cannot penetrate some dense aggregates. The advantage over the rebound hammer is provision of test results at a greater depth (up to 50 mm).

Pull out test — this is not entirely non-destructive as there will be some surface damage, albeit easily repaired. A number of circular bars of steel with enlarged ends are cast into the concrete as work proceeds. This requires careful planning and location of bars with corresponding voids provided in the formwork. At the appropriate time, the bar and a piece of concrete are pulled out by tension jack. Although the concrete fails in tension and shear, the pull out force can be correlated to the compressive strength of the concrete.

Vibration test — a number of electronic tests have been devised, which include measurement of ultrasonic pulse velocity through concrete. This applies the principle of recording a pulse at predetermined frequencies over a given distance. The apparatus includes transducers in contact with the concrete, pulse generator, amplifier, and time measurement to digital display circuit. For converting the data to concrete compressive strength, see BS EN 12504-4: Testing concrete in structures.

A variation, using resonant frequency, measures vibrations produced at one end of a concrete sample against a receiver or pick up at the other. The driving unit or exciter is activated by a variable frequency oscillator to generate vibrations varying in resonance, depending on the concrete quality. The calculation of compressive strength by conversion of amplified vibration data is by formulae found in BS 1881-209:1990.

Other relevant standards:—
Trees ~ these are part of our national heritage and are also the source of timber ~ to maintain this source a control over tree felling has been established under the Forestry Act 1967 which places the control responsibility on the Forestry Commission. Local planning authorities also have powers under the Town and Country Planning Act 1990 and the Town and Country Amenities Act 1974 to protect trees by making tree preservation orders. Contravention of such an order can lead to a substantial fine and a compulsion to replace any protected tree which has been removed or destroyed. Trees on building sites which are covered by a tree preservation order should be protected by a suitable fence.

![Tree covered by a tree preservation order](image)

Contravention of such an order can lead to a substantial fine and a compulsion to replace any protected tree which has been removed or destroyed. Trees, shrubs, bushes and tree roots which are to be removed from site can usually be grubbed out using hand held tools such as saws, picks and spades. Where whole trees are to be removed for relocation special labour and equipment is required to ensure that the roots, root earth ball and bark are not damaged.

Structures ~ buildings which are considered to be of historic or architectural interest can be protected under the Town and Country Acts provisions. The Department of the Environment lists buildings according to age, architectural, historical and/or intrinsic value. It is an offence to demolish or alter a listed building without first obtaining ‘listed building consent’ from the local planning authority. Contravention is punishable by a fine and/or imprisonment. It is also an offence to demolish a listed building without giving notice to the Royal Commission on Historic Monuments. This is to enable them to note and record details of the building.
Services which may be encountered on construction sites and the authority responsible are:-

Water — Local Water Company

Electricity — transmission ~ National Power, PowerGen and Nuclear Electric
distribution ~ Area Electricity Companies in England and Wales, Scottish Power and Scottish Hydro-Electric.

Gas — Local gas or energy service providers, e.g. British Gas.

Telephones — National Telecommunications Companies, e.g. BT, C&W, etc.

Drainage — Local Authority unless a private drain or sewer when owner(s) is responsible.

All the above authorities must be notified of any proposed new services and alterations or terminations to existing services before any work is carried out.

Locating Existing Services on Site ~

Method 1 — By reference to maps and plans prepared and issued by the respective responsible authority.

Method 2 — Using visual indicators ~

Method 3 — Detection specialist contractor employed to trace all forms of underground services using electronic subsurface survey equipment.

Once located, position and type of service can be plotted on a map or plan, marked with special paint on hard surfaces and marked with wood pegs with indentification data on earth surfaces.
Setting Out the Building Outline — this task is usually undertaken once the site has been cleared of any debris or obstructions and any reduced level excavation work is finished. It is usually the responsibility of the contractor to set out the building(s) using the information provided by the designer or architect. Accurate setting out is of paramount importance and should therefore only be carried out by competent persons and all their work thoroughly checked, preferably by different personnel and by a different method.

The first task in setting out the building is to establish a base line to which all the setting out can be related. The base line very often coincides with the building line which is a line whose position on site is given by the local authority in front of which no development is permitted.

Typical Setting Out Example —

- Outline of building marked by cord fixed to corner posts
- Diagonal checks
- Temporary bench mark or site datum post
- Footpath
- Road kerb
- Nail in centre of post
- 50 x 50 corner post driven firmly into the ground
- Cord marking outline of building
- Outline marked on ground with dry lime or similar powder

Temporary Bench Mark — this is a fixed point on site to which all levels are related and should be established at an early stage in the contract. Where possible it should relate to an ordnance bench mark. On site it can be any permanent feature such as a drain cover or a firmly driven post.
Setting Out Trenches ~ the objective of this task is twofold. Firstly it must establish the excavation size, shape and direction and secondly it must establish the width and position of the walls. The outline of building will have been set out and using this outline profile boards can be set up to control the position, width and possibly the depth of the proposed trenches. Profile boards should be set up at least 2 000 clear of trench positions so they do not obstruct the excavation work. The level of the profile crossboard should be related to the site datum and fixed at a convenient height above ground level if a traveller is to be used to control the depth of the trench. Alternatively the trench depth can be controlled using a level and staff related to site datum. The trench width can be marked on the profile with either nails or sawcuts and with a painted band if required for identification.

NB. Corners of walls transferred from intersecting cord lines to mortar spots on concrete foundations using a spirit level.
Setting Out a Framed Building ~ framed buildings are usually related to a grid, the intersections of the grid lines being the centre point of an isolated or pad foundation. The grid is usually set out from a base line which does not always form part of the grid. Setting out dimensions for locating the grid can either be given on a drawing or they will have to be accurately scaled off a general layout plan. The grid is established using a theodolite and marking the grid line intersections with stout pegs. Once the grid has been set out offset pegs or profiles can be fixed clear of any subsequent excavation work. Control of excavation depth can be by means of a traveller sighted between sight rails or by level and staff related to site datum.

Typical Details ~

1st. position of theodolite - sighted onto F4 and points B4 to E4 fixed and marked

2nd. position of theodolite - sighted onto A4 turned 90° and points B1 to F1 fixed and marked

3rd. theodolite position to fix points F2 & F3

△ TBM or site datum

internal grid points fixed by setting up theodolite over any of the perimeter points

* setting out dimensions to establish grid line A4 to F4

sight rail fixed at known level

fenced peg - alternative to profile

profile board

cords

profile board

evacuation

pad template

grid setting out peg

1. Pad template positioned with cords between profiles and pad outline marked with dry lime or similar powder.

2. Pad pits excavated using traveller sighted between sight rails fixed at a level related to site datum.
Setting Out Reduced Level Excavations — the overall outline of the reduced level area can be set out using a theodolite, ranging rods, tape and pegs working from a base line. To control the depth of excavation, sight rails are set up at a convenient height and at positions which will enable a traveller to be used.

Typical Details —

1. Setting up sight rails —

![Diagram of setting up sight rails]

- Staff reading gives height of collimation of level
- Temporary bench mark or site datum post
- Ground level
- Necessary staff reading calculated to give level at desired height
- Level
- Sight line
- Sight rail fixed here
- Sight rail posts

2. Controlling excavation depth —

![Diagram of controlling excavation depth]

- Site datum post set in concrete
- Sight rails fixed at desired level
- Corner posts to fix outline of excavation area
- Outline of excavation area marked with dry sand or similar material
- Free standing traveller
- Formation level
- Corner post
- Sight rails — face painted black and white

Height of traveller = desired level of sight rail - formation level
Levelling ~ the process of establishing height dimensions, relative to a fixed point or datum. Datum is mean sea level, which varies between different countries. For UK purposes this is established at Newlyn in Cornwall, from tide data recorded between May 1915 and April 1921. Relative levels defined by bench marks are located throughout the country. The most common, identified as carved arrows, can be found cut into walls of stable structures. Reference to Ordnance Survey maps of an area will indicate bench mark positions and their height above sea level, hence the name Ordnance Datum (OD).

On site it is usual to measure levels from a temporary bench mark (TBM), i.e. a manhole cover or other permanent fixture, as an OD may be some distance away.

Instruments consist of a level (tilting or automatic) and a staff. A tilting level is basically a telescope mounted on a tripod for stability. Correcting screws establish accuracy in the horizontal plane by air bubble in a vial and focus is by adjustable lens. Cross hairs of horizontal and vertical lines indicate image sharpness on an extending staff of 3, 4 or 5 m length. Staff graduations are in 10mm intervals, with estimates taken to the nearest millimetre. An automatic level is much simpler to use, eliminating the need for manual adjustment. It is approximately levelled by centre bulb bubble. A compensator within the telescope effects fine adjustment.
Setting Out—Levelling

Application: methods to determine differences in ground levels for calculation of site excavation volumes and costs.

Rise and fall:
Staff reading at A = 3.00 m, B = 1.30 m
Ground level at A = 200 m above ordnance datum (AOD)
Therefore level at B = 200 m + rise (-fall if declining)
So level at B = 200 + (3.00 - 1.30) = 201.7 m

Height of collimation (HC):
HC at A = Reduced level (RL) + staff reading
= 200 m + 3.00 m = 203 m AOD
Level at B = HC at A - staff reading at B
= 203 - 1.30 = 201.7 m
Theodolite — a tripod mounted instrument designed to measure angles in the horizontal or vertical plane.

The theodolite in principle

Measurement — a telescope provides for focal location between instrument and subject. Position of the scope is defined by an index of angles. The scale and presentation of angles varies from traditional micrometer readings to computer compatible crystal displays. Angles are measured in degrees, minutes and seconds, e.g. 165° 53′ 30″.

Direct reading micrometer scale

Application — at least two sightings are taken and the readings averaged. After the first sighting, the horizontal plate is rotated through 180° and the scope also rotated 180° through the vertical to return the instrument to its original alignment for the second reading. This process will move the vertical circle from right face to left face, or vice-versa. It is important to note the readings against the facing — see below.

Defining an angle

<table>
<thead>
<tr>
<th>station - target</th>
<th>left face</th>
<th>right face</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-B</td>
<td>00° 00′ 00″</td>
<td>180° 00′ 30″</td>
<td>00° 00′ 15″</td>
</tr>
<tr>
<td>A-C</td>
<td>40° 10′ 10″</td>
<td>220° 10′ 30″</td>
<td>40° 10′ 20″</td>
</tr>
</tbody>
</table>

Angle = 40° 10′ 05″
Road Construction ~ within the context of building operations, roadworks usually consist of the construction of small estate roads, access roads and driveways together with temporary roads laid to define site circulation routes and/or provide a suitable surface for plant movements. The construction of roads can be considered under three headings:

1. Setting out.
2. Earthworks (see page 115)
3. Paving Construction (see pages 116 & 117)

Setting Out Roads ~ this activity is usually carried out after the top soil has been removed using the dimensions given on the layout drawing(s). The layout could include straight lengths, junctions, hammer heads, turning bays and intersecting curves.

Straight Road Lengths ~ these are usually set out from centre lines which have been established by traditional means.

Junctions and Hammer Heads ~

Centre lines fixed by traditional methods. Tape hooked over pin at chainage zero and passed around chainage point pin at 8·500 then returned to chainage zero with a tape length of 29·021. Radius pin held tape length 17·000 and tape is moved until tight between all pins. Radius pin is driven and a 6·000 tape length is swung from the pin to trace out curve which is marked with pegs or pins.

Tape length = 17 + \(\sqrt{2} \times 8.5 \)

= 29·021
Earthworks - this will involve the removal of topsoil together with any vegetation, scraping and grading the required area down to formation level plus the formation of any cuttings or embankments. Suitable plant for these operations would be tractor shovels fitted with a 4 in 1 bucket (page 150): graders (page 149) and bulldozers (page 147). The soil immediately below the formation level is called the subgrade whose strength will generally decrease as its moisture content rises therefore if it is to be left exposed for any length of time protection may be required. Subgrade protection may take the form of a covering of medium gauge plastic sheeting with 300mm laps or alternatively a covering of sprayed bituminous binder with a sand topping applied at a rate of 1 litre per m². To preserve the strength and durability of the subgrade it may be necessary to install cut off subsoil drains alongside the proposed road (see Road Drainage on page 654).

Paving Construction - once the subgrade has been prepared and any drainage or other buried services installed the construction of the paving can be undertaken. Paved surfaces can be either flexible or rigid in format. Flexible or bound surfaces are formed of materials applied in layers directly over the subgrade whereas rigid pavings consist of a concrete slab resting on a granular base (see pages 116 & 117).

Typical Flexible Paving Details -

- **surfacing = base layer + wearing course**

 - 60mm thick base course of dense bitumen macadam or asphalt laid to form the crossfalls and/or gradients
 - wearing course of coated macadam or asphalt having good non-skid properties; reasonable resistance to glare and an acceptable life – should be laid within 3 days of base layer

- sub-base of crush stone or dry lean mix concrete (1:15) laid in 100 to 150 mm thick compacted layers - total thickness related to loading and subgrade strength

NB. no road joints required.
Rigid Pavings ~ these consist of a reinforced or unreinforced insitu concrete slab laid over a base course of crushed stone or similar material which has been blinded to receive a polythene sheet slip membrane. The primary objective of this membrane is to prevent grout loss from the insitu slab.

Typical Rigid Paving Details ~

- 40 to 80mm end cover
- Asphalt or similar topping if required
- 50 to 60mm cover
- Insitu concrete paving slab - depth to design
- Polythene sheet slip membrane
- 80mm thick crushed stone blinded base layer

The paving can be laid between metal road forms or timber edge formwork. Alternatively, the kerb stones could be laid first to act as permanent formwork.

- 25mm diameter x 600mm long steel fixing stake
- 5 or 6mm thick pressed steel standard road form
- Housing for sliding plate
- Stake housings welded to web of road form
- Stop for sliding plate

Standard road form length 3.000

50

100 to

250

STANDARD ROAD FORM

3 No. fixing stakes

5 No. fixing stakes

fixing stake housing

FLEXIBLE ROAD FORM
Joints in Rigid Pavings - longitudinal and transverse joints are required in rigid pavings to:

1. Limit size of slab.
2. Limit stresses due to subgrade restraint.
3. Provide for expansion and contraction movements.

The main joints used are classified as expansion, contraction or longitudinal, the latter being the same in detail as the contraction joint differing only in direction. The spacing of road joints is determined by:

1. Slab thickness.
2. Whether slab is reinforced or unreinforced.
3. Anticipated traffic load and flow rate.
4. Temperature at which concrete is laid.

Typical Road Joint Spacings

- 36,000 to 72,000 - reinforced
- 24,000 to 54,000 - unreinforced

Typical Road Joint Details

- Concrete slab over 125 mm thick
- 20 x 25 mm thick mastic
- 20 mm wide compressible material
- 20 mm dia. x 500 long dowel bars at 300 % coated with bitumen and fitted with plastic compression cap
- Induced crack
- Plastic or timber crack inducer
- 16 mm dia. x 400 long half coated dowel bars at 300 %
Typical Examples:

- 150 x 50 pcc edging
- 200 x 100 concrete foundation
- 100mm blinded and consolidated hardcore
- 20mm thick wearing course of 10mm coated macadam to BS 4987

Flexible Paving:

- 75mm thick consolidated hardcore
- 75mm thick plain insitu concrete with contraction joints at 3:000 max. c/c and expansion joints at 27:000 max. c/c
- 600 x 600 x 50 pcc flags laid with butt joints filled with 1:3 c/s mortar

Rigid Paving:

- 150 x 50 pcc edging
- 200 x 100 concrete foundation
- 25mm thick 1:4 dry cement/sand bed
- 75mm consolidated hardcore

Paving Flags or Slabs:

- 150 x 50 edging
- 60mm thick pcc plain or interlocking paving blocks vibrated into bed with sand filled joints

Small Unit Pavings:

- 100mm consolidated hardcore
- 50mm thick bed of sharp sand

All pavings should be laid to a minimum fall of 1:60 to drain to one or both sides and have a minimum footpath width of 1:200.

BS EN 1340: Concrete kerb units.
Available sections — manufactured in 915mm lengths from silver/grey aggregate concrete.

KERBS

- **Splay** -12° to 15°, \(r = 16 \) to 19 mm radius
- **Half battered**

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>A</th>
<th>150</th>
<th>150</th>
<th>255</th>
<th>305</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>125</td>
<td>150</td>
<td>125</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>50</td>
<td>50</td>
<td>155</td>
<td>205</td>
<td></td>
</tr>
</tbody>
</table>

Bullnose

- \(\theta = 45^\circ \)

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>A</th>
<th>150</th>
<th>255</th>
<th>305</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>125</td>
<td>125</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>75</td>
<td>180</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>50</td>
<td>50</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>

Splayed

<table>
<thead>
<tr>
<th>Width (mm)</th>
<th>A</th>
<th>125</th>
<th>150</th>
<th>150</th>
<th>125</th>
<th>150</th>
<th>90</th>
<th>125</th>
<th>75</th>
<th>150</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>255</td>
<td>230</td>
<td>150</td>
<td>150</td>
<td>255</td>
<td>305</td>
<td>305</td>
<td>230</td>
<td>305</td>
<td>255</td>
<td></td>
</tr>
</tbody>
</table>

CHANNELS

- Dish
- Bullnose (optional)

EDGINGS

- **Round**
- **Flat**
- **Bullnose**
- **Chamfer**

<table>
<thead>
<tr>
<th>Width (mm)</th>
<th>255</th>
</tr>
</thead>
</table>

- Round 150/200/250 × 50 mm*
- Flat 150/200/250 × 50 mm*
- Bullnose 150/200 × 50 mm*
- Chamfer 178 × 63 mm

*denotes BS sections

Further components such as drop/tapered kerbs are available for vehicle accesses. Quadrants and angles provide for directional change.
Concrete paving flags — BS dimensions:

<table>
<thead>
<tr>
<th>Type</th>
<th>Size (nominal)</th>
<th>Size (work)</th>
<th>Thickness (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A — plain</td>
<td>600x450</td>
<td>598x448</td>
<td>50 or 63</td>
</tr>
<tr>
<td>B — plain</td>
<td>600x600</td>
<td>598x598</td>
<td>50 or 63</td>
</tr>
<tr>
<td>C — plain</td>
<td>600x750</td>
<td>598x748</td>
<td>50 or 63</td>
</tr>
<tr>
<td>D — plain</td>
<td>600x900</td>
<td>598x898</td>
<td>50 or 63</td>
</tr>
<tr>
<td>E — plain</td>
<td>450x450</td>
<td>448x448</td>
<td>50 or 70</td>
</tr>
<tr>
<td>TA/E — tactile</td>
<td>450x450</td>
<td>448x448</td>
<td>50 or 70</td>
</tr>
<tr>
<td>TA/F — tactile</td>
<td>400x400</td>
<td>398x398</td>
<td>50 or 65</td>
</tr>
<tr>
<td>TA/G — tactile</td>
<td>300x300</td>
<td>298x298</td>
<td>50 or 60</td>
</tr>
</tbody>
</table>

Note: All dimensions in millimetres.

Tactile flags — manufactured with a blistered (shown) or ribbed surface. Used in walkways to provide warning of hazards or to enable recognition of locations for people whose visability is impaired. See also, Department of Transport Disability Circular DU 1/86[1], for uses and applications.

Ref. BS 7263-1: Precast concrete flags, kerbs, channels, edgings and quadrants.

BS EN 1339: Concrete paving flags.
Landscaping ~ in the context of building works this would involve reinstatement of the site as a preparation to the landscaping in the form of lawns, paths, pavings, flower and shrub beds and tree planting. The actual planning, lawn laying and planting activities are normally undertaken by a landscape subcontractor. The main contractor's work would involve clearing away all waste and unwanted materials, breaking up and levelling surface areas, removing all unwanted vegetation, preparing the subsoil for and spreading topsoil to a depth of at least 150 mm.

Services ~ the actual position and laying of services is the responsibility of the various service boards and undertakings. The best method is to use the common trench approach, avoid as far as practicable laying services under the highway.

![Typical Common Trench Details](image)

Road Signs ~ these can range from markings painted on roads to define traffic lanes, rights of way and warnings of hazards to signs mounted above the road level to give information, warning or directives, the latter being obligatory.

Typical Examples ~

- **Information:** Blue arrow and letters
- **Warning:** Black triangle with white letters
- **Directive:** Red circle with black crossed out arrow
Scaffolds ~ these are temporary working platforms erected around the perimeter of a building or structure to provide a safe working place at a convenient height. They are usually required when the working height or level is 1:500 or more above the ground level. All scaffolds must comply with the minimum requirements and objectives of the Work at Height Regulations 2005.

Component Parts of a Tubular Scaffold ~

- Transom or putlog
- Ledger
- Vertical member usually called a standard spaced at 1.800 to 2.400 centres depending on load to be carried
- Transom or putlog
- Putlog clip
- Double coupler
- Base plate with locating spigot plan size 150 x 150
- Timber sole plate under base plates on soft or uneven ground
- All bracing fixed with swivel couplers
- fasade brace
- Cross brace

VERTICAL COMPONENT

HORIZONTAL COMPONENTS

SLOPING COMPONENTS
Putlog Scaffolds ~ these are scaffolds which have an outer row of standards joined together by ledgers which in turn support the transverse putlogs which are built into the bed joints or perpends as the work proceeds, they are therefore only suitable for new work in bricks or blocks.

Typical Details ~

wall under construction

boarded working platform - see page 125

blade end built into wall

100mm wide gap for plumb rule

1.350 to 1.500

putlog clip

putlog

ledger

ladder secured top and bottom to terminate at least 1.050 above working platform

standards at 2.000 centres

pitch 75° or '4 up 1 out'

1.400 maximum for tying-in details see page 126
Independent Scaffolds - these are scaffolds which have two rows of standards each row joined together with ledgers which in turn support the transverse transoms. The scaffold is erected clear of the existing or proposed building but is tied to the building or structure at suitable intervals - see page 126.

Typical Details

- guard rail
- reinforced polythene sheet tied to scaffold
- outer row of standards at 2.000 centres
- toe board clip
- toe board
- transom
- double coupler
- ladder secured top and bottom to terminate at least 1.050 above working platform
- swivel coupler
- putlog clip
- cross bracing to alternate pairs of standards
- ledger
- cross brace
- inner row of standards at 2.000 centres
- sole plate
- base plate
- pitch 75° or '4 up 1 out'

For tying-in details see page 126.
Working Platforms ~ these are close boarded or plated level surfaces at a height at which work is being carried out and they must provide a safe working place of sufficient strength to support the imposed loads of operatives and/or materials. All working platforms above the ground level must be fitted with a toe board and a guard rail.

Typical Details ~

- boards to be free of defects to BS 2482
- 150 mm minimum
- 25 mm wide x 0.9 mm thick galvanized hoop iron binding to both ends to prevent splitting
- 225 mm wide x 38 mm thick x 3.900 long softwood standard scaffold board
- maximum overhang 4 x board thickness
- bevelled piece at board overlap
- transom or putlog
- boards to be evenly supported on at least 3 supports per board length

SCAFFOLD BOARDS FOR WORKING PLATFORMS

- inner row of standards
- 300 max.
- 800 minimum
- 600 min.
- 470 max.
- outer row of standards
- toe board clips
- toe board
- transom
- ledger
- deposited material
- NB. intermediate guard rail will also satisfy 470 mm max. gap
- NB. above dimensions also apply to putlog scaffolds

Any height, at or below, ground level
Tying-in ~ all putlog and independent scaffolds should be tied securely to the building or structure at alternate lift heights vertically and at not more than 6,000 centres horizontally. Putlogs should not be classified as ties.

Suitable tying-in methods include connecting to tubes fitted between sides of window openings or to internal tubes fitted across window openings, the former method should not be used for more than 50% of the total number of ties. If there is an insufficient number of window openings for the required number of ties external rakers should be used.

Typical Details ~

- head plate
- window opening
- double coupler
- sole plate
- strut (could be horizontal)
- transom
- ledgers
- reveal pin
- standards
- reinforced polythene protective sheeting tied to scaffold
- protective sheeting
- tube against inner face of wall (could be horizontal)
- for putlog scaffolds a horizontal bridle across window opening to support putlog ends may be required
Mobile Scaffolds — otherwise known as mobile tower scaffolds. They can be assembled from pre-formed framing components or from standard scaffold tube and fittings. Used mainly for property maintenance. Must not be moved whilst occupied by persons or equipment.

Typical detail ~

Ladder Access:
Inclined within the tower to hinged access door in platform.
Secured to tower so as not to foul the ground.
Lowest rung max. 400 mm above the ground.
Patent Scaffolding ~ these are systems based on an independent scaffold format in which the members are connected together using an integral locking device instead of conventional clips and couplers used with traditional tubular scaffolding. They have the advantages of being easy to assemble and take down using semi-skilled labour and should automatically comply with the requirements set out in the Work at Height Regulations 2005. Generally cross bracing is not required with these systems but façade bracing can be fitted if necessary. Although simple in concept patent systems of scaffolding can lack the flexibility of traditional tubular scaffolds in complex layout situations.

Typical Example ~

1.500 or 2.500 long high tensile steel ledger

1.000; 2.000 or 3.000 long high tensile steel standard

1.270 long high tensile steel transom

Connecting pockets to receive blade ends of ledgers and transom welded to standard at 500mm centres

High tensile steel ledger

MAIN COMPONENTS

Spigot connecting pin

Guard rail

Toe board

Standards

Clip on intermediate transoms if required

Adjustable base plates

Elevation

Section
Scaffolding Systems ~ these are temporary stagings to provide safe access to and egress from a working platform. The traditional putlog and independent scaffolds have been covered on pages 122 to 126 inclusive. The minimum legal requirements contained in the Construction (Health Safety and Welfare) Regulations 1996 applicable to traditional scaffolds apply equally to special scaffolds. Special scaffolds are designed to fulfil a specific function or to provide access to areas where it is not possible and or economic to use traditional formats. They can be constructed from standard tubes or patent systems, the latter complying with most regulation requirements are easy and quick to assemble but lack the complete flexibility of the traditional tubular scaffolds.

Birdcage Scaffolds ~ these are a form of independent scaffold normally used for internal work in large buildings such as public halls and churches to provide access to ceilings and soffits for light maintenance work like painting and cleaning. They consist of parallel rows of standards connected by ledgers in both directions, the whole arrangement being firmly braced in all directions. The whole birdcage scaffold assembly is designed to support a single working platform which should be double planked or underlined with polythene or similar sheeting as a means of restricting the amount of dust reaching the floor level.

Slung Scaffolds ~ these are a form of scaffold which is suspended from the main structure by means of wire ropes or steel chains and is not provided with a means of being raised or lowered. Each working platform of a slung scaffold consists of a supporting framework of ledgers and transoms which should not create a plan size in excess of 2.500×2.500 and be held in position by not less than six evenly spaced wire ropes or steel chains securely anchored at both ends. The working platform should be double planked or underlined with polythene or similar sheeting to restrict the amount of dust reaching the floor level. Slung scaffolds are an alternative to birdcage scaffolds and although more difficult to erect have the advantage of leaving a clear space beneath the working platform which makes them suitable for cinemas, theatres and high ceiling banking halls.
Suspended Scaffolds ~ these consist of a working platform in the form of a cradle which is suspended from cantilever beams or outriggers from the roof of a tall building to give access to the façade for carrying out light maintenance work and cleaning activities. The cradles can have manual or power control and be in single units or grouped together to form a continuous working platform. If grouped together they are connected to one another at their abutment ends with hinges to form a gap of not more than 25 mm wide. Many high rise buildings have a permanent cradle system installed at roof level and this is recommended for all buildings over 30,000 high.

Typical Example ~

![Diagram of a suspended scaffold](image)

- **Balance is achieved when**

 kentledge \times tail length = cradle load \times cantilever but for safety kentledge \times tail length = at least 3\,(cradle load \times cantilever)

- **unless outriggers are securely bolted to roof structure to prevent overturning**

- **900 mm wide \times 2:400 long power operated cradle**

- **counterweights**

- **outriggers or cantilever beams of steel, timber or framed scaffold tubes**

- **hoist and safety ropes**

- **rope sheaves with safety device to prevent overspeeding**

- **cradle arms**

- **control box**

- **motor**

- **power cable**
Cantilever Scaffolds ~ these are a form of independent tied scaffold erected on cantilever beams and used where it is impracticable, undesirable or uneconomic to use a traditional scaffold raised from ground level. The assembly of a cantilever scaffold requires special skills and should therefore always be carried out by trained and experienced personnel.

Typical Example ~

- **300 maximum**
- **800 minimum**
- **470 max.**
- **950 minimum**
- **150 min.**

- **Guard rail**
- **Toe board**
- **Working platform**
- **Outer row of standards at 2000%**
- **Transom**
- **Inner row of standards at 2000%**
- **1.350 to 1.500**
- **Timber or steel cantilever beams**

Facade bracing to be used as required
Truss-out Scaffold ~ this is a form of independent tied scaffold used where it is impracticable, undesirable or uneconomic to build a scaffold from ground level. The supporting scaffold structure is known as the truss-out. The assembly of this form of scaffold requires special skills and should therefore be carried out by trained and experienced personnel.
Gantries ~ these are elevated platforms used when the building being maintained or under construction is adjacent to a public footpath. A gantry over a footpath can be used for storage of materials, housing units of accommodation and supporting an independent scaffold. Local authority permission will be required before a gantry can be erected and they have the power to set out the conditions regarding minimum sizes to be used for public walkways and lighting requirements. It may also be necessary to comply with police restrictions regarding the loading and unloading of vehicles at the gantry position. A gantry can be constructed of any suitable structural material and may need to be structurally designed to meet all the necessary safety requirements.

Typical Example ~

- independent tubular or patent scaffold
- timber boarded working platform underlined with polythene or similar sheeting supported on timber joists - spacing and size to design
- close boarded guard rail or fence to all open sides of gantry
- night warning lights to suit local authority requirements
- structural steel support columns - spacing and size to design
- structural steel cross and longitudinal beams to design
- boarded walkway on joists with approach ramps
- warning lights road
- 300 x 300 timber fender painted white and fixed with straps to columns
Shoring - this is a form of temporary support which can be given to existing buildings with the primary function of providing the necessary precautions to avoid damage to any person from collapse of structure as required by the Construction (Health, Safety and Welfare) Regulations 1996.

Shoring Systems - there are three basic systems of shoring which can be used separately or in combination with one another to provide the support(s) and these are namely:

1. Dead Shoring - used primarily to carry vertical loadings.
2. Raking Shoring - used to support a combination of vertical and horizontal loadings.
3. Flying Shoring - an alternative to raking shoring to give a clear working space at ground level.

Typical Shoring Situations:
- Wall supported by dead shore
- Wall under needle can be removed

Vertical load

Horizontal load

Raking shore takes combined vertical and horizontal loads

Wall or walls tend to lean or bulge

Flying shore exerts thrust on opposite walls thus giving rise to stability

DEAD SHORE (page 135) RAKING SHORE (page 136) FLYING SHORE (pages 137 to 139)
Dead Shores ~ these shores should be placed at approximately 2,000 c/c and positioned under the piers between the windows. Any windows in the vicinity of the shores being strutted to prevent distortion of the openings. A survey should be carried out to establish the location of any underground services so that they can be protected as necessary. The sizes shown in the detail below are typical, actual sizes should be obtained from tables or calculated from first principles. Any suitable structural material such as steel can be substituted for the timber members shown.

Typical Detail ~

- 300 x 300 needle
- dry mortar packing
- floor and ceiling finishes removed locally around shore legs
- 300 x 300 shore legs
- 100 x 100 ceiling struts at 2,000 c/c
- 1,000 minimum working space
- folding wedges
- 225 x 75 head plate
- w.i. dogs
- hoarding if required can be attached or free standing
- w.i. dogs
- 300 x 300 sleeper
- 225 x 75 sole plate
Raking Shoring - these are placed at 3.000 to 4.500 c/c and can be of single, double, triple or multiple raker format. Suitable materials are timber structural steel and framed tubular scaffolding.

Typical Multiple Raking Shore Detail:

250 x 75 wall plate secured with w.i. wall hooks
100 x 100 x 200 cleat
100 x 150 x 400 needle
250 x 250 rider
225 x 50 binding to both sides
halving joint in running length

250 x 250 top raking shore
250 x 250 middle raking shore
225 x 50 binding to both sides
folding wedges
250 x 250 bottom raking shore
225 x 50 binding to both sides
250 x 250 back shore
250 x 100 sole plate
grillage or platform out of 200 x 100 timbers

minimum angle for rakers 40°
maximum angle for rakers 70°
angle between top shore and sole plate 89°
Flying Shores — these are placed at 3:000 to 4:500 c/c and can be of a single or double format. They are designed, detailed and constructed to the same basic principles as that shown for raking shores on page 136. Unsymmetrical arrangements are possible providing the basic principles for flying shores are applied — see page 139.

Typical Single Flying Shore Detail ~

250 x 75 wall plate secured with w.i. wall hooks
100 x 100 x 200 cleat
100 x 150 x 400 needle
150 x 150 raking strut
folding wedges
folding wedges
150 x 75 straining sill
w.i. dogs
20mm diameter bolts at 600 c/c
raking strut
150 x 150 raking strut
folding wedges
folding wedges
250 x 250 horizontal shore
150 x 75 straining sill
needles
needles
cleats
cleats
spans up to 9:000
Typical Double Flying Shore Detail:

- 250 x 75 wall plate secured with w.i. wall hooks
- 100 x 100 x 200 cleat
- 100 x 150 x 400 needle
- 150 x 150 raking strut
- Folding wedges
- 150 x 75 straining sill
- 250 x 250 horizontal shore
- Folding wedges
- 20mm diameter bolts at 600° C/c

- Raking strut
- Folding wedges
- Stud or post
- 150 x 150 brace
- Stud
- Brace
- Needle
- Cleat
- W.i. dogs
- Spans up to 12,000
Unsymmetrical Flying Shores ~ arrangements of flying shores for unsymmetrical situations can be devised if the basic principles for symmetrical shores is applied (see page 137). In some cases the arrangement will consist of a combination of both raking and flying shore principles.

Typical Examples~

[Diagram of unsymmetrical flying shore arrangement with annotations]

wall plate secured with w.i. wall hooks

binding to both sides as required

top raking shore

set of folding wedges to end of each shore

middle raking shore

horizontal shore

wall plate

needle

cleat

sets of folding wedges

top raking shore

middle raking shore

wall plate

bottom raking shore

needle and cleat

binders to both sides as required

wall plate secured with w.i. wall hooks

cleat

needle

folding wedges
Temporary Support Determination ~ the basic sizing of most temporary supports follows the principles of elementary structural design. Readers with this basic knowledge should be able to calculate such support members which are required, particularly those used in the context of the maintenance and adaptation of buildings such as a dead shoring system.

Typical Example ~

Rafter length : \[\cos 35^\circ = \frac{3.7}{X} \]

\[X = \frac{3.7}{\cos 35^\circ} = \frac{3.7}{0.8192} = 4.520 \]

Loadings ~
- Roof ~ kg/m²
 - tiles 71.0
 - battens 3.4
 - felt 2.0
 - rafters 7.5
 - say 84.0 kg/m²

- Ceiling ~ kg/m²
 - joists 7.5
 - finishes 15.0
 - say 23.0 kg/m²

- Wall ~ kg/m²
 - brickwork 4.90.0
 - plaster finish 6.8
 - say 500.0 kg/m²

Weight of roof per metre run of wall = 84 × 4.52 = 379.68
Weight of ceiling per metre run of wall = 23 × 3.70 = 85.10
Weight of wall per metre run of wall = 500 × 3.00 = 1500.00
Total weight of wall per meter run = 1964.78

Total weight supported by needle = 1964.78 × shore centres = 3929.56 kg
say 3930 kg

For design calculations see next page
Note: for other typical weights of building materials see pages 33 & 34
Design calculations reference previous page.

Needle Design:

\[W = 3930 \text{ kg} \]
\[R_A = R_B = \frac{W}{2} \]

\[L = 3.000 \]

BM = \(\frac{WL}{4} = \frac{39300 \times 3000}{4} = 29475000 \text{ N/mm} \)

MR = stress \times section modulus = \(fZ = \frac{bd^2}{6} \)

Assume \(b = 300 \text{ mm} \) and \(f = 7 \text{ N/mm}^2 \)

then \(29475000 = \frac{7 \times 300 \times d^2}{6} \)

\[d = \sqrt{\frac{29475000 \times 6}{7 \times 300}} = 290.2 \text{ mm} \]

Use \(300 \times 300 \) timber section or 2 No. \(150 \times 300 \) sections bolted together with timber connectors.

Props to Needle Design:

\[\text{area} = \frac{\text{load}}{\text{stress}} = \frac{19650}{7} = 2807.143 \text{ mm}^2 \]

\[\therefore \text{minimum timber size} = \sqrt{2807.143} = 53 \times 53 \]

Check slenderness ratio:

\[\text{slenderness ratio} = \frac{l}{b} = \frac{4500}{53} = 84.9 \]

Slenderness ratio for medium term load is not more than 17.3 (from CP 112 — now BS 5268: Structural use of timber)

\[\therefore \text{minimum timber prop size} = \frac{l}{5r} = \frac{4500}{17.3} = 260.12 \text{ mm} \]

For practical reasons use \(300 \times 300 \) prop \(\therefore \text{new sr} = 15 \)

Check crushing at point of loading on needle:

Wall loading on needle = 3930 kg = 39300 N = 39.3 kN

Area of contact = width of wall \times width of needle

\[= 215 \times 300 = 64500 \text{ mm}^2 \]

Safe compressive stress perpendicular to grain = 1.72 N/mm^2

\[\therefore \text{safe load} = \frac{64500 \times 1.72}{1000} = 110.94 \text{ kN} \] which is > 39.3 kN
3 BUILDERS PLANT

GENERAL CONSIDERATIONS
BULLDOZERS
SCRAPERS
GRADERS
TRACTOR SHOVELS
EXCAVATORS
TRANSPORT VEHICLES
HOISTS
RUBBLE CHUTES AND SKIPS
CRANES
CONCRETING PLANT
General Considerations ~ items of builders plant ranging from small hand held power tools to larger pieces of plant such as mechanical excavators and tower cranes can be considered for use for one or more of the following reasons :-

1. Increased production.
2. Reduction in overall construction costs.
3. Carry out activities which cannot be carried out by the traditional manual methods in the context of economics.
4. Eliminate heavy manual work thus reducing fatigue and as a consequence increasing productivity.
5. Replacing labour where there is a shortage of personnel with the necessary skills.
6. Maintain the high standards required particularly in the context of structural engineering works.

Economic Considerations ~ the introduction of plant does not always result in economic savings since extra temporary site works such as roadworks, hardstandings, foundations and anchorages may have to be provided at a cost which is in excess of the savings made by using the plant. The site layout and circulation may have to be planned around plant positions and movements rather than around personnel and material movements and accommodation. To be economic plant must be fully utilised and not left standing idle since plant, whether hired or owned, will have to be paid for even if it is non-productive. Full utilisation of plant is usually considered to be in the region of 85% of on site time, thus making an allowance for routine, daily and planned maintenance which needs to be carried out to avoid as far as practicable plant breakdowns which could disrupt the construction programme. Many pieces of plant work in conjunction with other items of plant such as excavators and their attendant haulage vehicles therefore a correct balance of such plant items must be obtained to achieve an economic result.

Maintenance Considerations ~ on large contracts where a number of plant items are to be used it may be advantageous to employ a skilled mechanic to be on site to carry out all the necessary daily, preventive and planned maintenance tasks together with any running repairs which could be carried out on site.
Plant Costing ~ with the exception of small pieces of plant, which are usually purchased, items of plant can be bought or hired or where there are a number of similar items a combination of buying and hiring could be considered. The choice will be governed by economic factors and the possibility of using the plant on future sites thus enabling the costs to be apportioned over several contracts.

Advantages of Hiring Plant:-

1. Plant can be hired for short periods.
2. Repairs and replacements are usually the responsibility of the hire company.
3. Plant is returned to the hire company after use thus relieving the building contractor of the problem of disposal or finding more work for the plant to justify its purchase or retention.
4. Plant can be hired with the operator, fuel and oil included in the hire rate.

Advantages of Buying Plant:-

1. Plant availability is totally within the control of the contractor.
2. Hourly cost of plant is generally less than hired plant.
3. Owner has choice of costing method used.

Typical Costing Methods ~

1. Straight Line — simple method

 Capital Cost = £ 100 000
 Anticipated life = 5 years
 Year’s working = 1500 hrs
 Resale or scrap value = £ 9000
 Annual depreciation ~
 \[\frac{100 000 - 9000}{5} = £ 18 200 \]
 Hourly depreciation ~
 \[\frac{18200}{1500} = 12.13 \]
 Add 2% insurance = 0.27
 10% maintenance = 1.33
 Hourly rate = £13.73

2. Interest on Capital Outlay — widely used more accurate method

 Capital Cost = £ 100 000
 C.I. on capital
 \((8\% \text{ for 5 yrs}) = 46 930 \)
 Deduct resale value 9 000
 \[\frac{146 930}{137 930} \]
 + Insurance at 2% = 2 000
 + Maintenance at 10% = 10 000
 \[\frac{149 930}{1500} = £ 20.00 \]
 N.B. add to hourly rate running costs
Output and Cycle Times — all items of plant have optimum output and cycle times which can be used as a basis for estimating anticipated productivity taking into account the task involved, task efficiency of the machine, operator’s efficiency and in the case of excavators the type of soil. Data for the factors to be taken into consideration can be obtained from timed observations, feedback information or published tables contained in manufacturer’s literature or reliable textbooks.

Typical Example —

Backacter with 1m³ capacity bucket engaged in normal trench excavation in a clayey soil and discharging directly into an attendant haulage vehicle.

Optimum output = 60 bucket loads per hour
Task efficiency factor = 0.8 (from tables)
Operator efficiency factor = 75% (typical figure)
∴ Anticipated output = 60 × 0.8 × 0.75
= 36 bucket loads per hour
= 36 × 1 = 36 m³ per hour

An allowance should be made for the bulking or swell of the solid material due to the introduction of air or voids during the excavation process
∴ Net output allowing for a 30% swell = 36 − (36 × 0.3)
= say 25 m³ per hr.

If the Bill of Quantities gives a total net excavation of 950 m³

time required = \(\frac{950}{25} \) = 38 hours

or assuming an 8 hour day − 1/2 hour maintenance time in
days = \(\frac{38}{7.5} \) = say 5 days

Haulage vehicles required = 1 + \(\frac{\text{round trip time of vehicle}}{\text{loading time of vehicle}} \)

If round trip time = 30 minutes and loading time = 10 mins.

number of haulage vehicles required = 1 + \(\frac{30}{10} \) = 4

This gives a vehicle waiting overlap ensuring excavator is fully utilised which is economically desirable.
Bulldozers — these machines consist of a track or wheel mounted power unit with a mould blade at the front which is controlled by hydraulic rams. Many bulldozers have the capacity to adjust the mould blade to form an angledozer and the capacity to tilt the mould blade about a central swivel point. Some bulldozers can also be fitted with rear attachments such as rollers and scarifiers.

The main functions of a bulldozer are:-

1. Shallow excavations up to 300m deep either on level ground or sidehill cutting.
2. Clearance of shrubs and small trees.
3. Clearance of trees by using raised mould blade as a pusher arm.
4. Acting as a towing tractor.
5. Acting as a pusher to scraper machines (see next page).

NB. Bulldozers push earth in front of the mould blade with some side spillage whereas angledozers push and cast the spoil to one side of the mould blade.

Typical Bulldozer Details -

![Diagram of a bulldozer with labeled parts: protective cab and roll bar, exhaust pipe, 4 cylinder diesel engine, fuel tank, towing hook, steel track shoes, mould blade with tilt and angle capacity - maximum digging depth 300 mm, typical maximum speeds in km/h: forward gears - 11, reverse gear - 7.]

Note: Protective cab/roll bar to be fitted before use.
Scrapers — these machines consist of a scraper bowl which is lowered to cut and collect soil where site stripping and levelling operations are required involving large volume of earth. When the scraper bowl is full the apron at the cutting edge is closed to retain the earth and the bowl is raised for travelling to the disposal area. On arrival the bowl is lowered, the apron opened and the spoil pushed out by the tailgate as the machine moves forwards. Scrapers are available in three basic formats:

1. **Towed Scrapers** — these consist of a four wheeled scraper bowl which is towed behind a power unit such as a crawler tractor. They tend to be slower than other forms of scraper but are useful for small capacities with haul distances up to 300 km.

2. **Two Axle Scrapers** — these have a two wheeled scraper bowl with an attached two wheeled power unit. They are very manoeuvrable with a low rolling resistance and very good traction.

3. **Three Axle Scrapers** — these consist of a two wheeled scraper bowl which may have a rear engine to assist the four wheeled traction engine which makes up the complement. Generally these machines have a greater capacity potential than their counterparts, are easier to control and have a faster cycle time.

To obtain maximum efficiency scrapers should operate downhill if possible, have smooth haul roads, hard surfaces broken up before scraping and be assisted over the last few metres by a pushing vehicle such as a bulldozer.

Typical Scrapper Details

\[
\begin{align*}
\text{scraper bowl} & \quad \text{struck capacity} \ 14 \ m^3 \\
& \quad \text{heaped capacity} \ 20 \ m^3 \\
& \quad \text{width of cut} \ 3.000 \\
& \quad \text{depth of cut} \ 450 \ mm \ max.
\end{align*}
\]

\[
\begin{align*}
\text{8 cylinder diesel engine} & \quad \text{attached power unit with} \\
& \quad \text{a top forward speed of} \\
& \quad \text{45 km/h}
\end{align*}
\]

Note: Protective cab/roll bar to be fitted before use.
Graders ~ these machines are similar in concept to bulldozers in that they have a long slender adjustable mould blade, which is usually slung under the centre of the machine. A grader’s main function is to finish or grade the upper surface of a large area usually as a follow up operation to scraping or bulldozing. They can produce a fine and accurate finish but do not have the power of a bulldozer therefore they are not suitable for oversite excavation work. The mould blade can be adjusted in both the horizontal and vertical planes through an angle of 300° the latter enabling it to be used for grading sloping banks.

Two basic formats of grader are available:

1. Four Wheeled — all wheels are driven and steered which gives the machine the ability to offset and crab along its direction of travel.

2. Six Wheeled — this machine has 4 wheels in tandem drive at the rear and 2 front tilting idler wheels giving it the ability to counteract side thrust.

Typical Grader Details ~

- Maximum speeds: finishing ~ 10 km/h
- Banking ~ 6 km/h

CUTTING, SHAPING AND GRADING BANKS

4000 wide x 600mm high mould board with a finishing tolerance capacity of ± 5mm
Tractor Shovels ~ these machines are sometimes called loaders or loader shovels and primary function is to scoop up loose materials in the front mounted bucket, elevate the bucket and manoeuvre into a position to deposit the loose material into an attendant transport vehicle. Tractor shovels are driven towards the pile of loose material with the bucket lowered, the speed and power of the machine will enable the bucket to be filled. Both tracked and wheeled versions are available, the tracked format being more suitable for wet and uneven ground conditions than the wheeled tractor shovel which has greater speed and manoeuvring capabilities. To increase their versatility tractor shovels can be fitted with a 4 in 1 bucket enabling them to carry out bulldozing, excavating, clam lifting and loading activities.

Typical Tractor Shovel Details

- Maximum bucket lifting height: 4.600
- Maximum bucket dumping clearance height: 2.300
- Bucket front raised to reveal mouldboard section
- 1 m³ capacity for 4 in 1 bucket
- Robust glazed cab with all round vision
- Diesel engine
- Exhaust
- Maximum speeds:
 - Forward: 10 km/h
 - Reverse: 9 km/h
- Fuel tank
- Steel tracks
- Hydraulically controlled bucket arms
- 1 m³ capacity shovel bucket
- Maximum bucket lifting height: 3.400
- Maximum bucket dumping clearance height: 2.750
- Tyred wheels
Excavating Machines ~ these are one of the major items of builders plant and are used primarily to excavate and load most types of soil. Excavating machines come in a wide variety of designs and sizes but all of them can be placed within one of three categories :-

1. Universal Excavators ~ this category covers most forms of excavators all of which have a common factor the power unit. The universal power unit is a tracked based machine with a slewing capacity of 360° and by altering the boom arrangement and bucket type different excavating functions can be obtained. These machines are selected for high output requirements and are rope controlled.

2. Purpose Designed Excavators ~ these are machines which have been designed specifically to carry out one mode of excavation and they usually have smaller bucket capacities than universal excavators; they are hydraulically controlled with a shorter cycle time.

3. Multi-purpose Excavators ~ these machines can perform several excavating functions having both front and rear attachments. They are designed to carry out small excavation operations of low output quickly and efficiently. Multi-purpose excavators can be obtained with a wheeled or tracked base and are ideally suited for a small building firm with low excavation plant utilisation requirements.

Skimmers ~ these excavators are rigged using a universal power unit for surface stripping and shallow excavation work up to 300mm deep where a high degree of accuracy is required. They usually require attendant haulage vehicles to remove the spoil and need to be transported between sites on a low-loader. Because of their limitations and the alternative machines available they are seldom used today.
Face Shovels ~ the primary function of this piece of plant is to excavate above its own track or wheel level. They are available as a universal power unit based machine or as a hydraulic purpose designed unit. These machines can usually excavate any type of soil except rock which needs to be loosened, usually by blasting, prior to excavation. Face shovels generally require attendant haulage vehicles for the removal of spoil and a low loader transport lorry for travel between sites. Most of these machines have a limited capacity of between 300 and 400mm for excavation below their own track or wheel level.

Typical Face Shovel Details ~

- bucket discharge position
- boom suspension rope
- hoist rope
- diesel engine universal tracked power unit
- bucket arm
- bucket with hinged back for rear discharge
- bucket arm hydraulic ram
- track mounted diesel engine power unit
- front discharge bucket
- slewing ring
Backacters - these machines are suitable for trench, foundation and basement excavations and are available as a universal power unit base machine or as a purpose designed hydraulic unit. They can be used with or without attendant haulage vehicles since the spoil can be placed alongside the excavation for use in backfilling. These machines will require a low loader transport vehicle for travel between sites. Backacters used in trenching operations with a bucket width equal to the trench width can be very accurate with a high output rating.
Draglines ~ these machines are based on the universal power unit with basic crane rigging to which is attached a drag bucket. The machine is primarily designed for bulk excavation in loose soils up to 3.000 below its own track level by swinging the bucket out to the excavation position and hauling or dragging it back towards the power unit. Dragline machines can also be fitted with a grab or clamshell bucket for excavating in very loose soils.

Typical Dragline Details ~

- Bucket capacities up to 3.25 m³ available
- Bucket discharge position
- Diesel engine universal tracked power unit
- Hoist chain
- Drag chain
- Front discharge drag bucket
- Boom suspension rope
- Pendant rope
- Hoist rope
- Drag rope
- Grab closing rope
- Tag rope
- Grab bucket in open position

TYPICAL GRAB BUCKET
Multi-purpose Excavators ~ these machines are usually based on the agricultural tractor with 2 or 4 wheel drive and are intended mainly for use in conjunction with small excavation works such as those encountered by the small to medium sized building contractor. Most multi-purpose excavators are fitted with a loading/excavating front bucket and a rear backactor bucket both being hydraulically controlled. When in operation using the backactor bucket the machine is raised off its axles by rear mounted hydraulic outriggers or jacks and in some models by placing the front bucket on the ground. Most machines can be fitted with a variety of bucket widths and various attachments such as bulldozer blades, scarifiers, grab buckets and post hole auger borers.

Typical Multi-purpose Excavator Details ~

- bucket in raised position
- bucket in discharge position
- bucket in discharge position
- enclosed glazed cab with all round vision
- bucket raised in tucked position
- pivot connection giving 180° arc of operation
- 4 cylinder diesel engine tractor
- hydraulic outriggers
- loading/excavating bucket - capacities up to 1m³ - widths up to 2’000
- backactor or backhoe bucket - capacities up to 0.28 m³ - widths up to 900 mm

Typical maximum road speed 30 km/h
Transport Vehicles — these can be defined as vehicles whose primary function is to convey passengers and/or materials between and around building sites. The types available range from the conventional saloon car to the large low loader lorries designed to transport other items of builders plant between construction sites and the plant yard or depot.

Vans — these transport vehicles range from the small two person plus a limited amount of materials to the large vans with purpose designed bodies such as those built to carry large sheets of glass. Most small vans are usually fitted with a petrol engine and are based on the manufacturer’s standard car range whereas the larger vans are purpose designed with either petrol or diesel engines. These basic designs can usually be supplied with an uncovered tipping or non-tipping container mounted behind the passenger cab for use as a ‘pick-up’ truck.

Passenger Vehicles — these can range from a simple framed cabin which can be placed in the container of a small lorry or ‘pick-up’ truck to a conventional bus or coach. Vans can also be designed to carry a limited number of seated passengers by having fixed or removable seating together with windows fitted in the van sides thus giving the vehicle a dual function. The number of passengers carried can be limited so that the driver does not have to hold a PSV (public service vehicle) licence.

Lorries — these are sometimes referred to as haul vehicles and are available as road or site only vehicles. Road haulage vehicles have to comply with all the requirements of the Road Traffic Acts which among other requirements limits size and axle loads. The off-highway or site only lorries are not so restricted and can be designed to carry two to three times the axle load allowed on the public highway. Site only lorries are usually specially designed to traverse and withstand the rough terrain encountered on many construction sites. Lorries are available as non-tipping, tipping and special purpose carriers such as those with removable skips and those equipped with self loading and unloading devices. Lorries specifically designed for the transportation of large items of plant are called low loaders and are usually fitted with integral or removable ramps to facilitate loading and some have a winching system to haul the plant onto the carrier platform.
Dumpers - these are used for the horizontal transportation of materials on and off construction sites generally by means of an integral tipping skip. Highway dumpers are of a similar but larger design and can be used to carry materials such as excavated spoil along the roads. A wide range of dumpers are available of various carrying capacities and options for gravity or hydraulic discharge control with front tipping, side tipping or elevated tipping facilities. Special format dumpers fitted with flat platforms, rigs to carry materials skips and rigs for concrete skips for crane hoisting are also obtainable. These machines are designed to traverse rough terrain but they are not designed to carry passengers and this misuse is the cause of many accidents involving dumpers.

Typical Dumper Details

- **STANDARD DUMPER**
 - Diesel engine giving a maximum forward speed of 16 km/h
 - Sprung steel seat
 - Roll bar
 - Gravity tipping skip with heaped capacity of 0.62 m³
 - Steering wheels
 - Hydraulically operated rear tipping skip with a heaped capacity of 10 m³
 - 2 or 4 wheel drive versions available

- **SWIVEL SKIP DUMPER**
 - Diesel engine giving a maximum forward speed of 16 km/h
 - Hydraulic tipping skip mounted on 180° slewing turntable with 5 set positions
 - Driving wheels

- **HIGHWAY DUMPER**
 - Diesel engine giving a maximum forward speed of 50 km/h
 - Driving cab
Fork Lift Trucks ~ these are used for the horizontal and limited vertical transportation of materials positioned on pallets or banded together such as brick packs. They are generally suitable for construction sites where the building height does not exceed three storeys. Although designed to negotiate rough terrain site fork lift trucks have a higher productivity on firm and level soils. Three basic fork lift truck formats are available namely straight mast, overhead and telescopic boom with various height, reach and lifting capacities. Scaffolds onto which the load(s) are to be placed should be strengthened locally or a specially constructed loading tower could be built as an attachment to or as an integral part of the main scaffold.

Typical Fork Lift Truck Details -

STRAIGHT MAST FORKLIFT
- Telescopic straight mast
- Forward tilt 3° max.
- Backward tilt 10° max.
- Maximum lift height - 5.700
- Maximum load - 1.5 tonnes

TELESCOPIC BOOM FORKLIFT
- Telescopic boom
- Maximum forward reach - 3.350
- Maximum lift height - 8.500
- Maximum load - 2 tonnes

OVERHEAD FORKLIFT
- Diesel engine
- Twin lifting forks

Hydraulically controlled overhead lifting arm
- Maximum forward reach - 2.350
- Maximum lift height - 6.500
- Maximum load - 1.5 tonnes

NB. loads must be placed correctly on forks and the forklift truck must not be overloaded.
Hoists — these are designed for the vertical transportation of materials, passengers or materials and passengers (see page 160). Materials hoists are designed for one specific use (i.e. the vertical transportation of materials) and under no circumstances should they be used to transport passengers. Most material hoists are of a mobile format which can be dismantled, folded onto the chassis and moved to another position or site under their own power or towed by a haulage vehicle. When in use material hoists need to be stabilised and/or tied to the structure and enclosed with a protective screen.

Typical Materials Hoist Details

- **Top bracket with automatic overun control**
- **Lattice hoist mast 7·320 high which can be extended by adding further hoist mast sections to 32·000 high providing tie support is given every 2·750 above the initial 7·320 mast height**
- **Hoist rope**
- **Tubular mast support struts**
- **1·500 wide x 1·200 deep two barrow hardwood timber hoist platform with a maximum load capacity of 500kg**
- **Timber buffer plate**
- **Stabilising jacks or outriggers**
Passenger Hoists ~ these are designed to carry passengers although most are capable of transporting a combined load of materials and passengers within the lifting capacity of the hoist. A wide selection of hoists are available ranging from a single cage with rope suspension to twin cages with rack and pinion operation mounted on two sides of a static tower.

Typical Passenger Hoist Details -

- passenger hoist tower assembled from 1.500 long sections to a maximum tied height of 240.000
- climbing rack
- working platform on top of cage for scaffold type crane used to extend hoist tower
- electric motor and pinion housed behind cage
- 1.680 long x 1.370 wide enclosed passenger cage
- access gate hoist
- 2.600 high wire mesh screen enclosure to lowest hoist position
- reinforced concrete base

2.700 high cage to carry 12 persons or a total payload of 1000 kg at speeds of 40 to 100 metres per minute.

Landings as required.

NB. operation of hoist is from within the cage and the hoist must be fitted to prevent any overrun.
Rubble Chutes ~ these apply to contracts involving demolition, repair, maintenance and refurbishment. The simple concept of connecting several perforated dustbins is reputed to have been conceived by an ingenious site operative for the expedient and safe conveyance of materials.

In purpose designed format, the tapered cylinders are produced from reinforced rubber with chain linkage for continuity. Overall unit lengths are generally 1100mm, providing an effective length of 1m. Hoppers and side entry units are made for special applications.

Ref. Highways Act – written permit (license) must be obtained from the local authority highways department for use of a skip on a public thoroughfare. It will have to be illuminated at night and may require a temporary traffic light system to regulate vehicles.
Cranes — these are lifting devices designed to raise materials by means of rope operation and move the load horizontally within the limitations of any particular machine. The range of cranes available is very wide and therefore choice must be based on the loads to be lifted, height and horizontal distance to be covered, time period(s) of lifting operations, utilisation factors and degree of mobility required. Crane types can range from a simple rope and pulley or gin wheel to a complex tower crane but most can be placed within 1 of 3 groups namely mobile, static and tower cranes.

Typical Crane Classifications —

- **MOBILE CRANE**
 - low pivot crane
 - operating position can be changed by crane under its power

- **STATIC CRANE**
 - low pivot crane
 - operated from a fixed position

- **TOWER CRANE**
 - high pivot crane
 - can be operated from a fixed position or rail mounted and mobile

NB. static and tower cranes can be positioned closer to the face of the building than a low pivot mobile crane.
Self Propelled Cranes - these are mobile cranes mounted on a wheeled chassis and have only one operator position from which the crane is controlled and the vehicle driven. The road speed of this type of crane is generally low usually not exceeding 30km p.h. A variety of self propelled crane formats are available ranging from short height lifting strut booms of fixed length to variable length lattice booms with a fly jib attachment.

Typical Self Propelled Crane Details -

fly jib attachment
(see page 165)

typical specification -
main boom length 38.000 maximum
lifting capacities for a 24.000
main boom length -
stabilised on outriggers -
31.4 tonnes at 4.000 radius
19.0 tonnes at 8.000 radius
free on wheels -
9.6 tonnes at 4.000 radius
4.9 tonnes at 8.000 radius

pendant rope

boom suspension ropes

diesel engine power unit with a 360°
slewing capacity

4 No. stabilisers or outriggers
Lorry Mounted Cranes ~ these mobile cranes consist of a lattice or telescopic boom mounted on a specially adapted truck or lorry. They have two operating positions: the lorry being driven from a conventional front cab and the crane being controlled from a different location. The lifting capacity of these cranes can be increased by using outrigger stabilising jacks and the approach distance to the face of building decreased by using a fly jib. Lorry mounted telescopic cranes require a firm surface from which to operate and because of their short site preparation time they are ideally suited for short hire periods.

Typical Lorry Mounted Telescopic Crane Details -

- **Typical Specification**
 - Boom length: 18.000
 - Lifting capacities:
 - 11.8 tonnes at 5.000 radius
 - 4.3 tonnes at 11.000 radius
 - Free on wheels:
 - 2.4 tonnes at 5.000 radius
 - 0.5 tonnes at 11.000 radius
 - Maximum road speed: 65 km/h

- Hoist rope
- Telescoping double acting hydraulic ram housed within boom sections
- All round vision cab housing road driving and crane operation controls
- Diesel powered lorry
- Slewing ring
- Duplicate crane controls at rear
- 4 No. outrigger stabilising jacks
Lorry Mounted Lattice Jib Cranes - these cranes follow the same basic principles as the lorry mounted telescopic cranes but they have a lattice boom and are designed as heavy duty cranes with lifting capacities in excess of 100 tonnes. These cranes will require a firm level surface from which to operate and can have a folding or sectional jib which will require the crane to be rigged on site before use.

Typical Lorry Mounted Lattice Jib Crane Details -

typical specification -
maximum jib length 54.860
fly jib length 15.000
maximum load 55 tonnes
using jib length of 7.600
and an operating radius of
3.600 with outriggers or
15.000 tonnes free on wheels
lifting capacity of fly jib
approximately half that of
jib for defined radii
maximum road speed 45 km/h

auxiliary hoist rope
main hoist rope
pendant or luffing rope
jib suspension ropes
4 No. outrigger stabilising jacks

1 No. diesel engine lorry

4 No. diesel engine power unit
with 360° slewing capacity
mounted on slewing ring
Track Mounted Cranes ~ these machines can be a universal power unit rigged as a crane (see page 154) or a purpose designed track mounted crane with or without a fly jib attachment. The latter type are usually more powerful with lifting capacities up to 45 tonnes. Track mounted cranes can travel and carry out lifting operations on most sites without the need for special road and hardstand provisions but they have to be rigged on arrival after being transported to site on a low loader lorry.

Typical Track Mounted or Crawler Crane Details -

- Maximum jib length 30,000
- Which can be extended by a fly jib attachment 9,000 or 12,000 long giving a load capacity of 5.5 tonnes at 7,000 radius or outreach for the combination

- Pendant or luffing rope
- Hoist rope
- Gantry mast
- Jib suspension ropes
- Sectionalised lattice jib
- Diesel powered crawler unit with 360° slewing capacity

Typical Specification -

- Using a boom length of 30,000 maximum loads are:
 - 15.8 tonnes at 4,000 radius
 - 5.4 tonnes at 12,000 radius
 - 2.2 tonnes at 24,000 radius

Maximum travelling speed

1.6 km/h
Gantry Cranes — these are sometimes called portal cranes and consist basically of two ‘A’ frames joined together with a cross member on which transverses the lifting appliance. In small gantry cranes (up to 10 tonnes lifting capacity) the ‘A’ frames are usually wheel mounted and manually propelled whereas in the large gantry cranes (up to 100 tonnes lifting capacity) the ‘A’ frames are mounted on powered bogies running on rail tracks with the driving cab and lifting gear mounted on the cross beam or gantry. Small gantry cranes are used primarily for loading and unloading activities in stock yards whereas the medium and large gantry cranes are used to straddle the work area such as in power station construction or in repetitive low to medium rise developments. All gantry cranes have the advantage of three direction movement —

1. Transverse by moving along the cross beam.
2. Vertical by raising and lowering the hoist block.
3. Horizontal by forward and reverse movements of the whole gantry crane.

Typical Gantry Crane Details ~

- **lattice cross beam or gantry**
- **driving cab**
- **hoist block**
- **lattice ‘A’ frames**
 - span between frames 20,000
 - maximum height under hook 25,000
 - maximum lifting capacity 20 tonnes
 - maximum travel speed along rails 100 metres per minute
- **powered bogies**
- **counterweight or ballast**
Mast Cranes ~ these are similar in appearance to the familiar tower cranes but they have one major difference in that the mast or tower is mounted on the slewing ring and thus rotates whereas a tower crane has the slewing ring at the top of the tower and therefore only the jib portion rotates. Mast cranes are often mobile, self erecting, of relatively low lifting capacity and are usually fitted with a luffing jib. A wide variety of models are available and have the advantage over most mobile low pivot cranes of a closer approach to the face of the building.

Typical Mast Crane Details ~

- **Jib Luffed**
 - At 45°
 - Radius = 10.70
 - Maximum load at end of jib = 550 kg.
 - Maximum height under hook of 24.700

- **Jib in Horizontal Position**
 - Maximum load at end of jib = 550 kg.
 - Maximum load at 9.500 radius = 900 kg.
 - Maximum height under hook = 14.000

NB. radius = horizontal distance from \(\phi \) of slewing ring to hook

- **Self Erecting Lattice Mast and Jib**
 - Which folds onto slewing platform chassis for towing by standard lorry or similar vehicle

- **Winch Housing**
 - Encloses winch, electric motor and ballast

- **Stabilising and Levelling Jacks**

168
Tower Cranes — most tower cranes have to be assembled and erected on site prior to use and can be equipped with a horizontal or luffing jib. The wide range of models available often make it difficult to choose a crane suitable for any particular site but most tower cranes can be classified into one of four basic groups thus:

1. Self Supporting Static Tower Cranes — high lifting capacity with the mast or tower fixed to a foundation base — they are suitable for confined and open sites. (see page 170)

2. Supported Static Tower Cranes — similar in concept to self supporting cranes and are used where high lifts are required, the mast or tower being tied at suitable intervals to the structure to give extra stability. (see page 171)

3. Travelling Tower Cranes — these are tower cranes mounted on power bogies running on a wide gauge railway track to give greater site coverage — only slight gradients can be accommodated therefore a reasonably level site or specially constructed railway support trestle is required. (see page 172)

4. Climbing Cranes — these are used in conjunction with tall buildings and structures. The climbing mast or tower is housed within the structure and raised as the height of the structure is increased. Upon completion the crane is dismantled into small sections and lowered down the face of the building. (see page 173)

All tower cranes should be left in an 'out of service' condition when unattended and in high wind conditions, the latter varying with different models but generally wind speeds in excess of 60km p.h. would require the crane to be placed in an out of service condition thus:
Cranes

Typical Self Supporting Static Tower Crane Details -

1. Precast concrete counterweight blocks
2. Jib stay rods
3. Counter jib stay rods
4. Stay rods support frame
5. Triangular jib
6. Motors and winches
7. Cab
8. Slewing ring
9. Trolley
10. Hoist block
11. 25,000 long jib lifting 500 kg. at maximum radius and 2 tonnes at minimum radius
12. Access ladder housed within tower or attached to an outside face
13. Bracing or struts
14. Base frame
15. Mass or reinforced concrete foundation base

Tower Crane Operation - two methods are in general use -

1. Cab Control - the crane operator has a good view of most of the lifting operations from the cab mounted at top of the tower but a second person or banksman is required to give clear signals to the crane operator and to load the crane
2. Remote Control - the crane operator carries a control box linked by a wandering lead to the crane controls.
Typical Supported Static Tower Crane Details

- **Cranes**

- **counter jib**
- **stay rods**
- **motor**
- **slewing tower**
- **triangular jib**
- **slewing ring**
- **hoist block**
- **trolley**
- **last tie not more than 75% of free standing height**
- **spacing of all further ties not more than 20% of free standing height**
- **not more than 30% of free standing height**
- **not more than 50% of free standing height**

NB. the above tie spacings are typical for specific cranes see supplier's data.

- **precast concrete counterweight blocks**
- **anchorage to building**
- **access ladder with safety hoops fixed to external face of tower**
- **sectionalised tower fixed to foundation base with holding down bolts through base frame**
- **bracing or struts**
- **reinforced concrete foundation**
- **building under construction**

2.000 min.

171
Typical Travelling (Rail Mounted) Tower Crane Details:

- precast concrete counterweight blocks
- counter jib stay rods
- jib stay rods
- triangular jib
- stay rods support mast
- lifting capacities:
 - max. radius 1.0 tonnes
 - min. radius 4.0 tonnes
- sectionalised tower fixed to rail mounted chassis forming free standing crane
- access ladder housed within tower or attached to an outside face
- powered bogies
- motors and winches
- compacted aggregate track support

4.800 gauge level rail track fixed to timber sleepers with 35 mm diameter bolts as tie rods to opposite rails. Minimum inner radius for curved track 10.000. Maximum gradient for sloping tracks 1:200.

pcc crosses, timber sleeper, track, tie rods, 6.000
Typical Climbing Crane Details:

- Crane raised one or two stories at a time according to crane type and/or needs.
- Crane raised to new working position after floor(s) have been cast and cured.
- Precast concrete counterweight blocks.
- Stay rods support mast.
- Jib stay rods.
- Triangular jib.
- Motors and winches.
- Counter jib stay rods.
- Cab.
- Slew ring.
- Hoist block.
- Sectional tower.
- Climbing rope anchorage.
- Climbing hoist rope.
- Crane base.
- Floor under construction.
- Winch drum.
- Electric motor.
- Platform.
- Support platform.
- High rise building.
- Self adjusting wedges and collar if required.
- Cast and cured floors.
Concreting ~ this site activity consists of four basic procedures —

1. Material Supply and Storage — this is the receiving on site of the basic materials namely cement, fine aggregate and coarse aggregate and storing them under satisfactory conditions. (see Concrete Production — Materials on pages 257 & 258)

2. Mixing — carried out in small batches this requires only simple hand held tools whereas when demand for increased output is required mixers or ready mixed supplies could be used. (see Concrete Production on pages 259 to 262 and Concreting Plant on pages 175 to 180)

3. Transporting — this can range from a simple bucket to barrows and dumpers for small amounts. For larger loads, especially those required at high level, crane skips could be used:-

![Diagram of crane hook and skip loader]

ROLL OVER SKIP
Capacities - 0.4 to 2.3 m³

STANDING SKIP
Capacities - 0.4 to 6.0 m³

For the transportation of large volumes of concrete over a limited distance concrete pumps could be used. (see page 178)

4. Placing Concrete — this activity involves placing the wet concrete in the excavation, formwork or mould; working the concrete between and around any reinforcement; vibrating and/or tamping and curing in accordance with the recommendations of BS 8110: Structural use of concrete. This standard also covers the striking or removal of the formwork. (see Concreting Plant on page 179 and Formwork on page 393)

Further ref. BS 8000-2: Workmanship on building sites. Codes of practice for concrete work.
Concrete Mixers — apart from the very large output mixers most concrete mixers in general use have a rotating drum designed to produce a concrete without segregation of the mix.

Concreting Plant — the selection of concreting plant can be considered under three activity headings —
1. Mixing. 2. Transporting. 3. Placing.

Choice of Mixer — the factors to be taken into consideration when selecting the type of concrete mixer required are —
1. Maximum output required (m³/hour).
2. Total output required (m³).
3. Type or method of transporting the mixed concrete.
4. Discharge height of mixer (compatibility with transporting method).

Concrete mixer types are generally related to their designed output performance, therefore when the answer to the question ‘How much concrete can be placed in a given time period?’ or alternatively ‘What mixing and placing methods are to be employed to mix and place a certain amount of concrete in a given time period?’ has been found the actual mixer can be selected. Generally a batch mixing time of 5 minutes per cycle or 12 batches per hour can be assumed as a reasonable basis for assessing mixer output.

Small Batch Mixers — these mixers have outputs of up to 200 litres per batch with wheelbarrow transportation an hourly placing rate of 2 to 3 m³ can be achieved. Most small batch mixers are of the tilting drum type. Generally these mixers are hand loaded which makes the quality control of successive mixes difficult to regulate.
Medium Batch Mixers ~ outputs of these mixers range from 200 to 750 litres and can be obtained at the lower end of the range as a tilting drum mixer or over the complete range as a non-tilting drum mixer with either reversing drum or chute discharge. The latter usually having a lower discharge height. These mixers usually have integral weight batching loading hoppers, scraper shovels and water tanks thus giving better quality control than the small batch mixers. Generally they are unsuitable for wheelbarrow transportation because of their high output.

Typical Examples ~

- loading hopper in loading position - hopper raised by double acting hydraulic ram
- 55 litre water tank
- steel mixing drum with rear discharge - 200 litre mixed capacity

NB. the volume output of all concrete mixers is approx. 30% less than the dry input volume due to the consolidation which takes place during mixing.
Transporting Concrete ~ the usual means of transporting mixed concrete produced in a small capacity mixer is by wheelbarrow. The run between the mixing and placing positions should be kept to a minimum and as smooth as possible by using planks or similar materials to prevent segregation of the mix within the wheelbarrow.

Dumpers ~ these can be used for transporting mixed concrete from mixers up to 600 litre capacity when fitted with an integral skip and for lower capacities when designed to take a crane skip.

Typical Examples ~

STANDARD TYPE DUMPER
- Diesel engine
- Max. load 1250 kg
- 500 litre capacity gravity tipping skip
- Maximum speed 12 mph
- Tyred wheels

CRANE SKIP DUMPER
- Diesel engine
- Maximum load 1250 kg
- Roll bar
- 300 litre capacity detachable crane skip
- Tyred wheels

Ready Mixed Concrete Trucks ~ these are used to transport mixed concrete from a mixing plant or depot to the site. Usual capacity range of ready mixed concrete trucks is 4 to 6 m³. Discharge can be direct into placing position via a chute or into some form of site transport such as a dumper, crane skip or concrete pump.

Typical Details ~

- Diesel powered truck
- Max. laden weight 20 tonnes
- Turning circle 15.5 m
- Water tank - capacity 950 litres
 (mixing 825 litres - flushing 125 litres)
- 6 m³ capacity mixer/agitator drum
- Hinged feed chute
- Fixed discharge chute
- Primary distribution chute
- Extension chutes
- 600 mm
- 3.000 m
Concrete Pumps ~ these are used to transport large volumes of concrete in a short time period (up to 100 m3 per hour) in both the vertical and horizontal directions from the pump position to the point of placing. Concrete pumps can be trailer or lorry mounted and are usually of a twin cylinder hydraulically driven format with a small bore pipeline (100 mm diameter) with pumping ranges of up to 85,000 vertically and 200,000 horizontally depending on the pump model and the combination of vertical and horizontal distances. It generally requires about 45 minutes to set up a concrete pump on site including coating the bore of the pipeline with a cement grout prior to pumping the special concrete mix. The pump is supplied with pumpable concrete by means of a constant flow of ready mixed concrete lorries throughout the pumping period after which the pipeline is cleared and cleaned. Usually a concrete pump and its operator(s) are hired for the period required.

Typical Concrete Pump Details ~

- Intermediate placing boom position
- Steel placing boom hydraulically raised into required placing position and lowered onto lorry for transporting
- Alternative intermediate placing boom position
- Angled placing boom position
- Horizontal placing boom position
- Diesel powered lorry supported on jacked outriggers whilst pumping

- Rear mounted feed hopper
- 100 mm diameter flexible delivery pipe
- Maximum height placing boom position
- Lorry mounted concrete pump controlled from lorry or by remote control with a wandering lead
Placing Concrete ~ this activity is usually carried out by hand with the objectives of filling the mould, formwork or excavated area to the correct depth, working the concrete around any inserts or reinforcement and finally compacting the concrete to the required consolidation. The compaction of concrete can be carried out using simple tamping rods or boards or alternatively it can be carried out with the aid of plant such as vibrators.

Poker Vibrators ~ these consist of a hollow steel tube casing in which is a rotating impellor which generates vibrations as its head comes into contact with the casing —

Poker vibrators should be inserted vertically and allowed to penetrate 75mm into any previously vibrated concrete.

Clamp or Tamping Board Vibrators ~ clamp vibrators are powered either by compressed air or electricity whereas tamping board vibrators are usually petrol driven —
Power Float — a hand-operated electric motor or petrol engine, surmounted over a mechanical surface skimmer. Machines are provided with an interchangeable revolving disc and a set of blades. These are used in combination to produce a smooth, dense and level surface finish to insitu concrete beds.

The advantages offset against the cost of plant hire are:

* Eliminates the time and materials needed to apply a finishing screed.
* A quicker process and less labour-intensive than hand troweling.

Application — after transverse tamping, the concrete is left to partially set for a few hours. Amount of setting time will depend on a number of variables, including air temperature and humidity, mix specification and machine weight. As a rough guide, walking on the concrete will leave indentations of about 3–4 mm. A surfacing disc is used initially to remove high tamping lines, before two passes with blades to finish and polish the surface.
4 Substructure

Foundations – Function, Materials and Sizing
Foundation Beds
Short Bored Pile Foundations
Foundation Types and Selection
Piled Foundations
Retaining Walls
Basement Construction
Waterproofing Basements
Excavations
Concrete Production
Cofferdams
Caissons
Underpinning
Ground Water Control
Soil Stabilisation and Improvement
Contaminated Subsoil Treatment
Foundations — the function of any foundation is to safely sustain and transmit to the ground on which it rests the combined dead, imposed and wind loads in such a manner as not to cause any settlement or other movement which would impair the stability or cause damage to any part of the building.

Example —

Subsoil beneath foundation is compressed and reacts by exerting an upward pressure to resist foundation loading. If foundation load exceeds maximum passive pressure of ground (i.e. bearing capacity) a downward movement of the foundation could occur. Remedy is to increase plan size of foundation to reduce the load per unit area or alternatively reduce the loadings being carried by the foundations.
Subsoil Movements — these are due primarily to changes in volume when the subsoil becomes wet or dry and occurs near the upper surface of the soil. Compact granular soils such as gravel suffer very little movement whereas cohesive soils such as clay do suffer volume changes near the upper surface. Similar volume changes can occur due to water held in the subsoil freezing and expanding — this is called Frost Heave.

Typical Examples —

- **Wall tends to tilt with ground movement and cracks can occur**
 - Roof and floors protect ground below from elements
 - Ground level
 - Soil exposed to the weather elements
 - Depth 600mm or less below ground level

- **Wall remains stable under most conditions**
 - Roof and floors protect ground below from elements
 - Ground level
 - Soil exposed to the weather elements
 - No ground movement should occur at depths below 1.800

- **Depth at least 1.000 below ground level will produce only very slight ground movement which should not affect stability of foundations**

Foundations — Subsoil Movements
Trees ~ damage to foundations. Substructural damage to buildings can occur with direct physical contact by tree roots. More common is the indirect effect of moisture shrinkage or heave, particularly apparent in clay subsoils.

Shrinkage is most evident in long periods of dry weather, compounded by moisture abstraction from vegetation. Notably broad leaved trees such as oak, elm and poplar in addition to the thirsty willow species. Heave is the opposite. It occurs during wet weather and is compounded by previous removal of moisture-dependent trees that would otherwise effect some drainage and balance to subsoil conditions.
Trees — effect on foundations. Trees up to 30 m distance may have an effect on foundations, therefore reference to local authority building control policy should be undertaken before specifying construction techniques.

Traditional strip foundations are practically unsuited, but at excavation depths up to 2.5 or 3.0 m, deep strip or trench fill (preferably reinforced) may be appropriate. Short bored pile foundations are likely to be more economical and particularly suited to depths exceeding 3.0 m.

For guidance only, the illustration and table provide an indication of foundation depths in shrinkable subsoils.

\[H = \text{Mature height of tree} \]
\[D = \text{Distance to centre of tree} \]

<table>
<thead>
<tr>
<th>Tree species</th>
<th>0.10</th>
<th>0.25</th>
<th>0.33</th>
<th>0.50</th>
<th>0.66</th>
<th>0.75</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oak, elm, poplar and willow</td>
<td>3.00</td>
<td>2.80</td>
<td>2.60</td>
<td>2.30</td>
<td>2.10</td>
<td>1.90</td>
<td>1.50</td>
</tr>
<tr>
<td>All others</td>
<td>2.80</td>
<td>2.40</td>
<td>2.10</td>
<td>1.80</td>
<td>1.50</td>
<td>1.20</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Minimum foundation depth (m)
Trees - preservation orders (see page 105) may be waived by the local planning authority. Permission for tree felling is by formal application and will be considered if the proposed development is in the economic and business interests of the community. However, tree removal is only likely to be acceptable if there is an agreement for replacement stock being provided elsewhere on the site.

In these circumstances, there is potential for ground heave within the 'footprint' of felled trees. To resist this movement, foundations must incorporate an absorbing layer or compressible filler with ground floor suspended above the soil.

DEEP STRIP OR TRENCH FILL FOUNDATION

- Raised concrete floor slab
- 150mm min. void
- Compressible material 'clayboard' on inside of foundation
- Polythene slip membrane
- 500mm

SHORT BORED PILE FOUNDATION

- Additional compressible material on beam face if required
- Compressible material to inside and underside of perimeter beam
- Reinforced concrete piles, spaced according to subsoil condition

Floor structure as above (see also page 325)
Cracking in Walls — cracks are caused by applied forces which exceed those that the building can withstand. Most cracking is superficial, occurring as materials dry out and subsequently shrink to reveal minor surface fractures of <2mm. These insignificant cracks can be made good with proprietary fillers.

Severe cracking in walls may result from foundation failure, due to inadequate design or physical damage. Further problems could include:

* Structural instability
* Air infiltration
* Sound insulation reduction
* Rain penetration
* Heat loss
* Visual depreciation

A survey should be undertaken to determine:

1. The cause of cracking, i.e.
 * Loads applied externally (tree roots, subsoil movement).
 * Climate/temperature changes (thermal movement).
 * Moisture content change (faulty dpc, building leakage).
 * Vibration (adjacent work, traffic).
 * Changes in physical composition (salt or ice formation).
 * Chemical change (corrosion, sulphate attack).
 * Biological change (timber decay).
2. The effect on a building’s performance (structural and environmental).
3. The nature of movement — completed, ongoing or intermittent (seasonal).

Observations over a period of several months, preferably over a full year, will determine whether the cracking is new or established and whether it is progressing.

Simple methods for monitoring cracks —

Further reading — BRE Digest 251: Assessment of damage in low rise buildings.
Foundation Materials — from page 183 one of the functions of a foundation can be seen to be the ability to spread its load evenly over the ground on which it rests. It must of course be constructed of a durable material of adequate strength. Experience has shown that the most suitable material is concrete.

Concrete is a mixture of cement + aggregates + water in controlled proportions.

CEMENT
Manufactured from clay and chalk and is the matrix or binder of the concrete mix. Cement powder can be supplied in bags or bulk —

Bags ~

25 kg.

air-tight sealed bags requiring a dry damp free store.

Bulk ~

12 to 50 tonne

delivered by tanker and pumped into storage silo.

AGGREGATES
Coarse aggregate is defined as a material which is retained on a 5mm sieve.

fine aggregate

Coarse aggregate is defined as a material which passes a 5mm sieve.

Aggregates can be either natural rock which has disintegrated or crushed stone or gravel.

WATER
Must be of a quality fit for drinking.

MIXES
These are expressed as a ratio thus:-

1 : 3 : 6 / 20mm which means —

1 part cement.

3 parts of fine aggregate.

6 parts of coarse aggregate

20mm — maximum size of coarse aggregate for the mix.

Water is added to start the chemical reaction and to give the mix workability — the amount used is called the — Water/Cement Ratio and is usually about 0.4 to 0.5.

Too much water will produce a weak concrete of low strength whereas too little water will produce a concrete mix of low and inadequate workability.
Foundation Types

TRADITIONAL STRIP
- Load bearing external wall
- Mass concrete slab for light wall loadings
- Deeper edge beam for heavier loadings

DEEP STRIP OR TRENCH FILL
- Load bearing external wall
- Reinforced concrete slab
- Weak or poor subsoil

W = \frac{\text{load per metre}}{\text{bearing capacity of soil}}

W = \text{not less than that given in Table on page 194}

NB. In all cases W must give adequate working space which is usually 450 to 600 mm minimum depending on depth of excavation.

Generally considered to be cheaper than traditional strip foundations since:
1. Fewer man hours required.
2. Requires less skilled trades.
3. Uses ready mix concrete therefore less material is stored on site making it clearer and easier to manage.
50 to 75 mm thick blinding layer of ash, coarse sand or a lean mix concrete

NB. ideal plan shape for the base is a square

area of base to be such that the unit load per m² does not exceed bearing capacity of the subsoil

central reinforced concrete column or isolated brick pier

reinforced concrete base

columns or piers placed so that their centre of gravity coincides with that of the base

reinforced concrete base

blinding

ISOlated Pad

COMBINED Pad
Bed ~ a concrete slab resting on and supported by the subsoil, usually forming the ground floor surface. Beds (sometimes called oversite concrete) are usually cast on a layer of hardcore which is used to make up the reduced level excavation and thus raise the level of the concrete bed to a position above ground level.

Typical Example ~

- A mass concrete bed (1:3:6/20mm mix 15N/mm²). Thickness for domestic work is usually 100 to 150mm and the bed is constructed so as to prevent the passage of moisture from the ground to the upper surface of the floor - this is usually achieved by incorporating into the design a damp-proof membrane - for details see page 566.

- A 100 to 150mm thick layer of hardcore material used should be inert and not affected by water. Suitable materials are gravel, crushed rock, quarry waste, concrete rubble, brick or tile rubble, blast furnace slag and pulverised fuel ash. The hardcore material should be laid evenly and well compacted with the upper surface blinded with fine grade material as required.
Basic Sizing ~ the size of a foundation is basically dependent on two factors ~

1. Load being transmitted, max 70 kN/m (dwellings up to 3 storeys).
2. Bearing capacity of subsoil under proposed foundation.

Bearing capacities for different types of subsoils may be obtained from tables such as those in BS 8004: Code of practice for foundations and BS 8103: Structural design of low rise buildings, or from soil investigation results.

Typical Examples ~

\[
W = \frac{\text{load}}{\text{bearing capacity}} = \frac{50}{100} = 0.5 \text{ m minimum}
\]

The above widths may not provide adequate working space within the excavation and can be increased to give required space. Guidance on the minimum width for a limited range of applications can be taken from the table on the next page.
<table>
<thead>
<tr>
<th>Ground type</th>
<th>Ground condition</th>
<th>Field test</th>
<th>Max. total load on load-bearing wall (kN/m)</th>
<th>Minimum width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>Not inferior to sandstone, limestone or firm chalk.</td>
<td>Requires a mechanical device to excavate.</td>
<td>20 30 40 50 60 70</td>
<td>At least equal to the width of the wall</td>
</tr>
<tr>
<td>Gravel</td>
<td>Medium density</td>
<td>Pick required to excavate.</td>
<td>250 300 400 500 600 650</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>Compact</td>
<td>50 mm square peg hard to drive beyond 150 mm.</td>
<td>250 300 400 500 600 650</td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>Stiff</td>
<td>Requires pick or mechanical device to aid removal. Can be indented slightly with thumb.</td>
<td>250 300 400 500 600 650</td>
<td></td>
</tr>
<tr>
<td>Sandy clay</td>
<td>Stiff</td>
<td>250 300 400 500 600 650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>Firm</td>
<td>Can be moulded under substantial pressure by fingers.</td>
<td>300 350 450 600 750 850</td>
<td></td>
</tr>
<tr>
<td>Sandy clay</td>
<td>Firm</td>
<td>300 350 450 600 750 850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>Loose</td>
<td>Can be excavated by spade. 50 mm square peg easily driven.</td>
<td>400 600</td>
<td></td>
</tr>
<tr>
<td>Silty sand</td>
<td>Loose</td>
<td>400 600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clayey sand</td>
<td>Loose</td>
<td>400 600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td>Soft</td>
<td>Finger pushed in up to 10 mm. Easily moulded with fingers.</td>
<td>450 650</td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>Soft</td>
<td>450 650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandy clay</td>
<td>Soft</td>
<td>450 650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silty clay</td>
<td>Soft</td>
<td>450 650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silt</td>
<td>Very soft</td>
<td>Finger easily pushed in up to 25 mm. Wet sample exudes between fingers when squeezed.</td>
<td>Conventional strip inappropriate. Steel reinforced wide strip, deep strip or piled foundation selected subject to specialist advice.</td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>Very soft</td>
<td>450 650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandy clay</td>
<td>Very soft</td>
<td>450 650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silty clay</td>
<td>Very soft</td>
<td>450 650</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Table 8 in the Bldg. Regs., A.D: A — Structure.
Typical procedure (for guidance only) —

Dead load per m run (see pages 33 and 34)
Substructure brickwork, 1 m × 1 m × 476 kg/m² = 476 kg
... ... cavity conc. (50 mm), 1 m × 1 m × 2300 kg/m³ = 115 kg
Foundation concrete, 0.15 m × 1 m × 0.5 m × 2300 kg/m³ = 173 kg
Superstructure brickwork, 5 m × 1 m × 221 kg/m² = 1105 kg
... ... blockwork & ins., 5 m × 1 m × 79 kg/m² = 395 kg
... ... 2 coat plasterwork, 5 m × 1 m × 22 kg/m² = 110 kg
Floor joists/boards/plstrbrd., 2.5 m × 1 m × 42.75 kg/m² = 107 kg
Ceiling joists/plstrbrd/ins., 2.5 m × 1 m × 19.87 kg/m² = 50 kg
Rafters, battens & felt, 2.9 m × 1 m × 12.10 kg/m² = 35 kg
Single lap tiling, 2.9 m × 1 m × 49 kg/m² = 142 kg

\[2708 \text{ kg} \]

Note: kg × 9.81 = Newtons
Therefore: 2708 kg × 9.81 = 26565 N or 26.56 kN

Imposed load per m run (see BS 6399-1: Loading for buildings) —
Floor, 2.5 m × 1 m × 1.5 kN/m² = 3.75 kN
Roof, 2.9 m × 1 m × 1.5 kN/m² (snow) = 4.05 kN

\[7.80 \text{ kN} \]

Note: For roof pitch > 30°, snow load = 0.75 kN/m²

Dead + imposed load is, 26.56 kN + 7.80 kN = 34.36 kN

Given that the subsoil has a safe bearing capacity of 75 kN/m².

\[W = \text{load ÷ bearing capacity} = 34.36 ÷ 75 = 0.458 \text{ m or 458 mm} \]

Therefore a foundation width of 500 mm is adequate.

Note: This example assumes the site is sheltered. If it is necessary to make allowance for wind loading, reference should be made to BS 6399-2: Code of practice for wind loads.
Stepped Foundations ~ these are usually considered in the context of strip foundations and are used mainly on sloping sites to reduce the amount of excavation and materials required to produce an adequate foundation.

Comparison —

Solid or cavity wall

Minimum depth | Foundation | Maximum depth

Level Foundation

Solid or cavity wall

Minimum depth | Foundation | Maximum depth

Stepped Foundation

Typical Details —

Solid or cavity wall

S

D

Ideally depth of step (S) should be in multiples of brick courses with a maximum depth not greater than D

Minimum overlap (L) = 2 × S; D or 300 mm whichever is the greater
Concrete Foundations ~ concrete is a material which is strong in compression but weak in tension. If its tensile strength is exceeded cracks will occur resulting in a weak and unsuitable foundation. One method of providing tensile resistance is to include in the concrete foundation bars of steel as a form of reinforcement to resist all the tensile forces induced into the foundation. Steel is a material which is readily available and has high tensile strength.

Comparisons:
- compression zone
- neutral axis
- tension cracks
- imposed loads induces tensile stresses in excess of concrete's own resistance
- wall or column
- original design size
- foundation tends to bend, the upper fibres being compressed and the lower fibres being stretched and put in tension.
- remedies increase size of base or design as a reinforced concrete foundation
- size of foundation increased to provide the resistance against the induced tensile stresses - generally not economic due to the extra excavation and materials required

Typical RC Foundation:
- wall or column
- reinforced concrete foundation
- 75 mm cover
- 50 to 75 mm thick blinding layer of weak concrete to provide accurate starting level

Reinforcement Patterns:
- distribution bars
- main bars at right angles to longitudinal axis

SQUARE BASE
- main bars both ways
Short Bored Piles ~ these are a form of foundation which are suitable for domestic loadings and clay subsoils where ground movements can occur below the 1000 depth associated with traditional strip and trench fill foundations. They can be used where trees are planted close to a new building since the trees may eventually cause damaging ground movements due to extracting water from the subsoil and root growth. Conversely where trees have been removed this may lead to ground swelling.

Typical Details

- **cavity insulation**
- **external wall**
- **damp-proof course**
- **ground level**
- **cavity filling**
- **floor screed**
- **50mm rigid insulation**
- **damp-proof membrane**
- **mass concrete ground floor**
- **compacted hardcore**
- **reinforced concrete ground beam cast in trench over short bored pile heads - size of beam and reinforcement to design or from tables**
- **250 to 300mm diameter according to design**
- **bored and cast insitu piles of mass concrete maximum spacing to design**
- **piles formed by lorry or tractor mounted auger capable of drilling 80 piles per day**

- **40 mm thick ash or lean concrete blinding**
- **depth of pile governed by level of suitable bearing capacity ground and/or stability of clay subsoil - economic maximum depth 4.500**

- **typical spacing of piles 1.800 to 2.500**
- **typical loading 40 to 125 kN per pile**

198
Simple Raft Foundations ~ these can be used for lightly loaded buildings on poor soils or where the top 450 to 600 mm of soil is overlaying a poor quality substrata.

Typical Details ~
- cavity insulation
- 75 mm thick permanent concrete perimeter paving at ground level
- damp-proof course
- perimeter paving protects raft edges from frost and weathering 1,000 min.
- polythene or similar joint
- 50 mm rigid insulation
- damp-proof membrane
- external wall
- floor screed
- edge thickening to 150 mm thick RC raft
- 150 mm thick RC raft forming ground floor slab
- compacted hardcore with upper surface blinded with 50 mm of ash or coarse sand
- mass concrete edge beam

REINFORCED CONCRETE RAFT WITH EDGE THICKENING
- cavity insulation
- external wall
- dpc
- ground level
- 750 minimum
- 300 min.

REINFORCED CONCRETE RAFT WITH EDGE BEAM
Foundation Design Principles ~ the main objectives of foundation design are to ensure that the structural loads are transmitted to the subsoil(s) safely, economically and without any unacceptable movement during the construction period and throughout the anticipated life of the building or structure.

Basic Design Procedure ~ this can be considered as a series of steps or stages —

1. Assessment of site conditions in the context of the site and soil investigation report.
2. Calculation of anticipated structural loading(s).
3. Choosing the foundation type taking into consideration —
 a. Soil conditions;
 b. Type of structure;
 c. Structural loading(s);
 d. Economic factors;
 e. Time factors relative to the proposed contract period;
 f. Construction problems.
4. Sizing the chosen foundation in the context of loading(s), ground bearing capacity and any likely future movements of the building or structure.

Foundation Types ~ apart from simple domestic foundations most foundation types are constructed in reinforced concrete and may be considered as being shallow or deep. Most shallow types of foundation are constructed within 2\(\times\)1000 of the ground level but in some circumstances it may be necessary to take the whole or part of the foundations down to a depth of 2\(\times\)1000 to 5\(\times\)1000 as in the case of a deep basement where the structural elements of the basement are to carry the superstructure loads. Generally foundations which need to be taken below 5\(\times\)1000 deep are cheaper when designed and constructed as piled foundations and such foundations are classified as deep foundations. (For piled foundation details see pages 205 to 222)

Foundations are usually classified by their type such as strips, pads, rafts and piles. It is also possible to combine foundation types such as strip foundations connected by beams to and working in conjunction with pad foundations.
Strip Foundations ~ these are suitable for most subsoils and light structural loadings such as those encountered in low to medium rise domestic dwellings where mass concrete can be used. Reinforced concrete is usually required for all other situations.

Typical Strip Foundation Types ~

TRADITIONAL STRIP
low rise domestic dwellings
or similar buildings

DEEP STRIP or TRENCH FILL
alternative to traditional strip

REINFORCED CONCRETE STRIP
used where induced tension exceeds concrete's own tensile resistance

CONTINUOUS COLUMN
used for closely spaced or close to boundary columns
Pad Foundations ~ suitable for most subsoils except loose sands, loose gravels and filled areas. Pad foundations are usually constructed of reinforced concrete and where possible are square in plan.

Typical Pad Foundation Types -
- RC or steel column
- 2 layer grillage of universal beams
- RC base to design
- mass concrete encasing 75 mm min.

ISOLATED or PAD FOUNDATION
- Designed to span in two directions therefore main bars are placed in the bottom both ways
- RC or steel column
- Blinding

RECTANGULAR PAD
- Used where width of base is restricted
- Plan shape can be a rectangle or where length is restricted a trapezium
- Blinding

STEEL GRILLAGE
- Used for heavy concentrated loads - seldom employed today
- Reinforced concrete base designed to span in one direction - main bars longitudinal in bottom
- Outer or boundary column
- Inner column
- Main bars between columns in top
- Centre of gravity of columns and base to coincide

COMBINED COLUMN FOUNDATIONS
- Outer column close to boundary or existing wall
Raft Foundations ~ these are used to spread the load of the superstructure over a large base to reduce the load per unit area being imposed on the ground and this is particularly useful where low bearing capacity soils are encountered and where individual column loads are heavy.

Typical Raft Foundation Types ~

- RC column
- 75mm high kicker
- 75mm thick blinding
- Main bars
- Binders
- Distribution bars
- Column starter bars

SOLID SLAB RAFT

- Reinforced concrete or steel columns positioned on beam intersections
- Ground beams
- Reinforced concrete raft spanning over ground beams

used on poor soils where the beams are employed to spread the column loads over the raft

NB. Ground beams can be designed as upstand beams with a precast concrete suspended floor at ground level thus creating a void space between raft and ground floor.

BEAM AND SLAB RAFT
Cantilever Foundations — these can be used where it is necessary to avoid imposing any pressure on an adjacent foundation or underground service.

Typical Cantilever Foundation Types:

- outer column
- cantilever end of beam
- beam
- inner column
- inner column base
- outer column or fulcrum base
- existing wall
- stub column
- existing foundation
- blinding
- main base
- 100 mm thick compressible material

Cantilever foundations designed and constructed in reinforced concrete.
Piled Foundations ~ these can be defined as a series of columns constructed or inserted into the ground to transmit the load(s) of a structure to a lower level of subsoil. Piled foundations can be used when suitable foundation conditions are not present at or near ground level making the use of deep traditional foundations uneconomic. The lack of suitable foundation conditions may be caused by :-

1. Natural low bearing capacity of subsoil.
2. High water table – giving rise to high permanent dewatering costs.
3. Presence of layers of highly compressible subsoils such as peat and recently placed filling materials which have not sufficiently consolidated.
4. Subsoils which may be subject to moisture movement or plastic failure.

Classification of Piles ~ piles may be classified by their basic design function or by their method of construction :-

END BEARING PILES

FRICITION OR FLOATING PILES

NB. Piles can work in a combination of the above design functions.
Replacement Piles - these are often called bored piles since the removal of the spoil to form the hole for the pile is always carried out by a boring technique. They are used primarily in cohesive subsoils for the formation of friction piles and when forming pile foundations close to existing buildings where the allowable amount of noise and/or vibration is limited.

Replacement Pile Types -

PERCUSSION BORED

small or medium size contracts with up to 300 piles
load range - 300 to 1300 kN
length range - up to 24,000

diameter range - 300 to 900

may have to be formed as a pressure pile in waterlogged subsoils - see page 207

FLUSH BORED

large projects - these are basically a rotary bored pile using bentonite as a drilling fluid
load range - 1000 to 5000 kN
length range - up to 30,000

diameter range - 600 to 1500

see page 208

ROTARY BORED

Small Diameter - < 600 mm
light loadings - can also be used in groups or clusters with a common pile cap to receive heavy loads
load range - 50 to 400 kN
length range - up to 15,000

diameter range - 240 to 600

see page 209

Large Diameter - > 600 mm
heavy concentrated loadings - may have an underreamed or belled toe
load range - 800 to 15,000 kN
length range - up to 60,000

diameter range - 600 to 2400

see page 210

NB. The above given data depicts typical economic ranges.

More than one pile type can be used on a single contract.
Percussion Bored Piles

Typical Details:
- pulley
- tripod or shear leg rig
- hoist rope
- weighted head
- cruciform plan shaped steel body
- cutting ring
- short lengths (1:000 to 1:400) of steel lining tube screwed together
- clay cutter
- granular soil shell
- flap
- steel lining tubes sink under own weight

BORING IN COHESIVE SOIL

BORING IN GRANULAR SOIL

- shear leg rig
- collar with lugs
- hydraulic jacks
- reinforcement cage
- internal drop hammer
- concrete tamped by drop hammer

FORMING PILE USING DROP HAMMER

- loading hopper and air lock
- valve
- compressed air supply
- steel lining tubes pulled out of bore hole by winch
- concrete consolidated by air pressure

FORMING PILE USING AIR PRESSURE
Flush Bored Piles

Typical Details -

Stage 1
- crane jib or boom
- kelly bar swivel connection
- telescopic rotary square kelly bar
- crane mounted kelly bar drive unit
- bentonite storage and draw-off connected to bentonite mixing plant

unlined borehole below upper casing

Stage 2
- 3.000 long steel casing
- bentonite filling to stabilise the excavation and support the sides of the borehole

standard crane power unit

- suspension rope for tremie pipe
- ready mixed concrete
- displaced bentonite pumped to storage
- return, settling and storage containers

reinforcement as required

- steel casing removed by crane upon completion
- tremie pipe placing concrete below the level of the concrete already placed

bentonite

insitu concrete consolidated by gravitational force

NB. Bentonite is a controlled mixture of fuller's earth and water which produces a slurry or mud which has thixotropic properties. When placed in the borehole it exerts a pressure in excess of earth + hydrostatic pressure.
Small Diameter Rotary Bored Piles

Typical Details:

- Derrick or mast housing lifting ropes and single or telescopic kelly bar.
- Drilling rig can be lorry mounted as shown or crane mounted as shown on pages 208 & 210.
- Hydraulic derrick rams.
- Winch.
- Power unit.
- Outrigger jacks to stabilise and level vehicle when drilling.
- Bore hole fully lined, partially lined or unlined according to type(s) of subsoil.
- Reasonably level ground surface.
- Pile cap - see page 222.
- Reinforcement to design.
- Auger type or drilling bucket to suit conditions.
- Completed pile - insitu concrete consolidated by gravitational force and placed by tremie pipe if water is present in borehole.
Large Diameter Rotary Bored Piles

Typical Details -

- crane jib or boom
- suspension rope
- kelly bar swivel connection
- rotary telescopic kelly bar
- crane mounted kelly bar drive unit

- reasonably level ground surface

- pile cap bonding reinforcement if required
- completed pile - insitu concrete consolidated by gravitational force and placed by tremie pipe if water is present in borehole
- guide casing - removed by crane upon completion
- borehole lined or unlined according to type(s) of subsoil
- auger type or drilling bucket to suit conditions

- in cohesive soils toe of pile can be underreamed up to 3 x pile shaft diameter to increase end bearing capacity
Displacement Piles - these are often called driven piles since they are usually driven into the ground displacing the earth around the pile shaft. These piles can be either preformed or partially preformed if they are not cast in situ and are available in a wide variety of types and materials. The pile or forming tube is driven into the required position to a predetermined depth or to the required 'set' which is a measure of the subsoil's resistance to the penetration of the pile and hence its bearing capacity by noting the amount of penetration obtained by a fixed number of hammer blows.

Displacement Pile Types:

- **Preformed**
 - Driven Insitu
 - Timber
 - Box
 - PCC and insitu concrete
 - (page 217)
 - Tube
 - Steel and insitu concrete
 - (page 216)
 - Cast Insitu
 - Concrete
 - Tube
 - (page 216)
 - 'H'
 - (page 215)
 - Steel
 - Screw
 - (page 215)
Timber Piles ~ these are usually square sawn and can be used for small contracts on sites with shallow alluvial deposits overlying a suitable bearing strata (e.g. river banks and estuaries.) Timber piles are percussion driven.

Typical Example ~

Typical Data :
load range - 50 to 350 kN
length range - up to 12,000 without splicing
size range - 225 x 225
300 x 300 *
350 x 350 *
400 x 400 *
450 x 450
600 x 600
* common sizes

NB. timber piles are not easy to splice and are liable to attack by marine borers when set in water therefore such piles should always be treated with a suitable preservative before being driven.
Preformed Concrete Piles - variety of types available which are generally used on medium to large contracts of not less than one hundred piles where soft soil deposits overlie a firmer strata. These piles are percussion driven using a drop or single acting hammer.

Typical Example [West's Hardrive Precast Modular Pile]

- Piling rig
- Cable for hoisting pile lengths
- Leader
- Drop hammer - see page 220
- Braces
- Helmet
- Power unit
- Reasonably level ground surface
- Splicing collar
- Reinforced precast concrete pile lengths from 2.500 to 10.000
- Precast concrete or steel shoe unit

Typical Data:
- Load range - 200 to 1,000 kN
- Length range - 7,000 to 18,000
- Size range - 250 x 250 up to 450 x 450

Splicing of pile lengths is difficult unless particular pile type has a special splicing joint collar.
Preformed Concrete Piles - jointing with a peripheral steel splicing collar as shown on the preceding page is adequate for most concentrically or directly loaded situations. Where very long piles are to be used and/or high stresses due to compression, tension and bending from the superstructure or the ground conditions are anticipated, the 4 or 8 lock pile joint [AARSLEFF PILING] may be considered.

Pile dimensions (mm) Possible No. of locks per joint
250 × 250, 300 × 300, 350 × 350 and 400 × 400 | 4
350 × 350, 400 × 400 and 450 × 450 | 8
Steel Box and 'H' Sections ~ standard steel sheet pile sections can be used to form box section piles whereas the 'H' section piles are cut from standard rolled sections. These piles are percussion driven and are used mainly in connection with marine structures.

Typical Examples ~

![Diagram of steel box and H sections piles]

- **FRODINGHAM BOX PILE**
- **RENDHEX BOX PILE**
- **UNIVERSAL BEARING PILE**

Typical Data ~
- **load range** - box piles 300 to 1500 kN
 - bearing piles 300 to 1700 kN
- **length range** - all types up to 36.000
- **size range** - various sizes and profiles available

Steel Screw Piles ~ rotary driven and used for dock and jetty works where support at shallow depths in soft silts and sands is required.

Typical Example ~

![Diagram of steel screw pile]

- **steel shaft**
- **cast iron helix**

Typical Data ~
- **load range** - 400 to 3000 kN
- **length range** - up to 24.000
- **size range** - shafts 150 to 350 mm dia.
 - overall blades 600 to 1200
Steel Tube Piles — used on small to medium size contracts for marine structures and foundations in soft subsoils over a suitable bearing strata. Tube piles are usually bottom driven with an internal drop hammer. The loading can be carried by the tube alone but it is usual to fill the tube with mass concrete to form a composite pile. Reinforcement, except for pile cap bonding bars, is not normally required.

Typical Example [BSP Cased Pile] —

- **Standard Crane Power Unit and Rigging**
- **Timber Trestle as Tube Support and Guide Frame**
- **Reasonably Level Ground Surface**
- **Steel Tube Out of Strip with Butt Welded Helix**
- **Drop Hammer Acting on Concrete Plug**
- **Plug of Very Low Water Content Earth Dry Concrete**
- **Steel Base Plate Welded to End of Tube**

Typical Data:
- **Load Range** - 300 to 1500 kN
- **Length Range** - up to 24.000 but can be extended by welding on extra lengths
- **Diameter Range** - 250 to 750
Partially Preformed Piles - these are composite piles of precast concrete and insitu concrete or steel and insitu concrete (see page 216). These percussion driven piles are used on medium to large contracts where bored piles would not be suitable owing to running water or very loose soils.

Typical Example [West's Shell Pile] -

Typical Pile Details -
- Polypropylene reinforced concrete shells
- Steel jointing band
- Reinforcement to design
- Insitu concrete filling to core
- Steel jointing band
- Precast concrete driving shoe

Typical Data:
- Load range - 300 to 1200 kN
- Length range - up to 30,000 mm
- Diameter range - 380 to 500 mm
Driven Insitu Piles — used on medium to large contracts as an alternative to preformed piles particularly where final length of pile is a variable to be determined on site.

Typical Example [Franki Driven Insitu Pile] —

1. DRIVING TUBE
 - Tube is withdrawn as hammer compacts concrete
 - Drop hammer operates inside of reinforcement cage
 - Charges of semi-dry concrete
 - Reinforcement to design
 - Enlarged toe

2. FORMING ENLARGED TOE
 - The drawn steel tube is supported in the leaders of a piling rig or frame during the formation of the pile
 - Stiff concrete
 - Enlarged toe

3. FORMING PILE SHAFT
 - Typical Data:
 - Load range - 300 to 1300 kN
 - Length range - up to 18,000
 - Diameter range - 300 to 600 mm
Cast Insitu Piles - an alternative to the driven insitu piles (see page 218)

Typical Example [Vibro Cast Insitu Pile] -

1. DRIVING TUBE
 - steel tube supported in the leaders of a piling rig or frame during pile formation
 - steel tube top driven to required depth or set
 - cast iron driving shoe

 tube is raised by reverse action of hammer as concrete is placed
 - reinforcement to design
 - concrete is tamped by means of rapid up and down blows from hammer as the steel tube is withdrawn
 - insitu concrete forced into weak pockets in the soil by tamping action of tube
 - driving shoe left in

2. FORMING PILE SHAFT
 - downward blow
 - upward blow

Typical Data -
- load range - 300 to 1300 kN
- length range - up to 18,000
- diameter range - 300 to 600 mm
Piling Hammers ~ these are designed to deliver an impact blow to the top of the pile to be driven. The hammer weight and drop height is chosen to suit the pile type and nature of subsoil(s) through which it will be driven. The head of the pile being driven is protected against damage with a steel helmet which is padded with a sand bed or similar material and is cushioned with a plastic or hardwood block called a dolly.

Drop Hammers ~ these are blocks of iron with a rear lug(s) which locate in the piling rig guides or leaders and have a top eye for attachment of the winch rope. The number of blows which can be delivered with a free fall of 1:200 to 1:500 ranges from 10 to 20 per minute. The weight of the hammer should be not less than 50% of the concrete or steel pile weight and 1 to 1.5 times the weight of a timber pile.

Single Acting Hammers ~ these consist of a heavy falling cylinder raised by steam or compressed air sliding up and down a fixed piston. Guide lugs or rollers are located in the piling frame leaders to maintain the hammer position relative to the pile head. The number of blows delivered ranges from 36 to 75 per minute with a total hammer weight range of 2 to 15 tonnes.
Double Acting Hammers - these consist of a cast iron cylinder which remains stationary on the pile head whilst a ram powered by steam or compressed air for both up and down strokes delivers a series of rapid blows which tends to keep the pile on the move during driving. The blow delivered is a smaller force than that from a drop or single acting hammer. The number of blows delivered ranges from 95 to 300 per minute with a total hammer weight range of 0.7 to 6.5 tonnes. Diesel powered double acting hammers are also available.

Diesel Hammers - these are self contained hammers which are located in the leaders of a piling rig and rest on the head of the pile. The driving action is started by raising the ram within the cylinder which activates the injection of a measured amount of fuel. The free falling ram compresses the fuel above the anvil causing the fuel to explode and expand resulting in a downward force on the anvil and upward force which raises the ram to recommence the cycle which is repeated until the fuel is cut off. The number of blows delivered ranges from 40 to 60 per minute with a total hammer weight range of 1.0 to 4.5 tonnes.
Pile Caps ~ piles can be used singly to support the load but often it is more economical to use piles in groups or clusters linked together with a reinforced concrete cap. The pile caps can also be linked together with reinforced concrete ground beams.

The usual minimum spacing for piles is :-

1. Friction Piles ~ 1:100 or not less than $3 \times \text{pile diameter}$, whichever is the greater.
2. Bearing Piles ~ 750 mm or not less than $2 \times \text{pile diameter}$, whichever is the greater.

Pile Testing ~ it is advisable to test load at least one pile per scheme. The test pile should be overloaded by at least 50% of its working load and this load should be held for 24 hours. The test pile should not form part of the actual foundations. Suitable testing methods are :-

1. Jacking against kentledge placed over test pile.
2. Jacking against a beam fixed to anchor piles driven in on two sides of the test pile.
Retaining Walls ~ the major function of any retaining wall is to act as an earth retaining structure for the whole or part of its height on one face, the other being exposed to the elements. Most small height retaining walls are built entirely of brickwork or a combination of brick facing and blockwork or mass concrete backing. To reduce hydrostatic pressure on the wall from ground water an adequate drainage system in the form of weep holes should be used, alternatively subsoil drainage behind the wall could be employed.

Typical Example of Combination Retaining Wall ~

- Precast concrete weathered coping stone
- Balustrade
- Pervious membrane over granular backfill
- Ground level
- Facings of dense clay engineering bricks tied to concrete wall with wall ties at 900°C/k horizontally and 450°C/c vertically
- 200mm wide 'no-fines' granular backfill
- 300mm wide mass concrete 1:2:4/20mm ag. retaining wall
- 12mm wide gap filled with mortar as work proceeds
- 75mm diameter PVC sleeved weepholes at 2000°C/c
- 20mm diameter x 600mm long dowel bars at 450°C/c
- Mass concrete 1:2:4/20mm ag. foundation
- Expansion joints required every 30000
Small Height Retaining Walls — retaining walls must be stable and the usual rule of thumb for small height brick retaining walls is for the height to lie between 2 and 4 times the wall thickness. Stability can be checked by applying the middle third rule —

![Diagram of retaining wall](image)

Typical Example of Brick Retaining Wall

- **PCC weathered coping stone**
- **Pervious membrane over granular backfill**
- **Ground level**
- **200mm wide 25mm nominal diameter 'no-fines' granular backfill**
- **75mm diameter PVC sleeved weepholes at 2000 c/c**
- **Mass concrete 1:2:4 / 20mm agg. foundation**
- **20mm wide flexcell or similar expansion joints at 30000 c/c**
Retaining Walls up to 6,000 high - these can be classified as medium height retaining walls and have the primary function of retaining soils at an angle in excess of the soil’s natural angle of repose. Walls within this height range are designed to provide the necessary resistance by either their own mass or by the principles of leverage.

Design - the actual design calculations are usually carried out by a structural engineer who endeavours to ensure that:

1. Overturning of the wall does not occur.
2. Forward sliding of the wall does not occur.
3. Materials used are suitable and not overstressed.
4. The subsoil is not overloaded.
5. In clay subsoils slip circle failure does not occur.

The factors which the designer will have to take into account:

1. Nature and characteristics of the subsoil(s).
2. Height of water table - the presence of water can create hydrostatic pressure on the rear face of the wall. It can also affect the bearing capacity of the subsoil together with its shear strength, reduce the frictional resistance between the underside of the foundation and the subsoil and reduce the passive pressure in front of the toe of the wall.
3. Type of wall.
4. Material(s) to be used in the construction of the wall.

Retaining Wall Terminology -

- surcharge
- upper ground level
- rear face
- straight or vertical face
- wedge of retained earth
- angle of repose
- heel
- base or foundation

front face
sloping or battered face
drainage or weep holes
lower ground level
toe
Earth Pressures ~ these can take one of two forms namely:

1. **Active Earth Pressures** — these are those pressures which tend to move the wall at all times and consist of the wedge of earth retained plus any hydrostatic pressure. The latter can be reduced by including a subsoil drainage system behind and/or through the wall.

2. **Passive Earth Pressures** — these are a reaction of an equal and opposite force to any imposed pressure thus giving stability by resisting movement.
Mass Retaining Walls ~ these walls rely mainly on their own mass to overcome the tendency to slide forwards. Mass retaining walls are not generally considered to be economic over a height of 1.800 when constructed of brick or concrete and 1.000 high in the case of natural stonework. Any mass retaining wall can be faced with another material but generally any applied facing will not increase the strength of the wall and is therefore only used for aesthetic reasons.

Medium Height Retaining Walls

Typical Brick Mass Retaining Wall Details ~

- Precast concrete weathered coping stone
- Bricks to have a crushing strength of not less than 20.5 MN/m² and to be laid with a mortar mix of 1:1/4:3 (cement: lime: sand) - vertical movement joints should be provided at not more than 15,000 centres
- 75 mm diameter weep holes at 1.800 %
- Back of wall to be coated with bituminous paint or lined with heavy duty polythene sheet
- PVC or similar pipe lining to weep holes
- Rubble filling behind wall and weep holes
- Ground level
- Mass concrete foundation
- DPC
- 450
- 225
- 890
- 900
- 525
- 300
- 225
- 225
- 40
- 1.800 maximum
- COHESIVE SUBSOIL
Medium Height Retaining Walls

Typical Brick Faced Mass Concrete Retaining Wall Detail:

- Precast concrete weathered coping
- Ground level
- Previous membrane over backfill
- Nominal 25mm 'no fines' granular backfill
- Mass concrete wall - mix as given for base
- Weak concrete backfill up to weep hole invert
- 20mm dia. mild steel dowel rods at 450%
- NB expansion joints at 30m%

- 12 mm gap filled with mortar as work proceeds
- BS 3921 engineering quality facing bricks laid in stretcher bond and tied to concrete wall with galvanised butterfly wall ties at 1000% horizontally and 600mm% vertically in a staggered pattern
- 75mm diameter PVC sleeved weep holes at 1800%
- Mass concrete base (1:2:4 / 20 mm agg.) characteristic strength of 21 N/mm² at 28 days

Dimensions:

- 450
- 200
- 650
- 75
- 600
- 1250
- 300
Cantilever Retaining Walls ~ these are constructed of reinforced concrete with an economic height range of 1:200 to 6:000. They work on the principles of leverage where the stem is designed as a cantilever fixed at the base and base is designed as a cantilever fixed at the stem. Several formats are possible and in most cases a beam is placed below the base to increase the total passive resistance to sliding. Facing materials can be used in a similar manner to that shown on page 228.
Formwork ~ concrete retaining walls can be cast in one of three ways - full height; climbing (page 231) or against earth face (page 232).

Full Height Casting ~ this can be carried out if the wall is to be cast as a freestanding wall and allowed to cure and gain strength before the earth to be retained is backfilled behind the wall. Considerations are the height of the wall, anticipated pressure of wet concrete, any strutting requirements and the availability of suitable materials to fabricate the formwork. As with all types of formwork a traditional timber format or a patent system using steel forms could be used.

Typical Details

- recoverable bolt and plate washer
- struts - timber or adjustable steel as required
- softwood walings in pairs
- framed plywood formwork panels
- alternative wall tie - greased spacer tube with through bolt
- plastic or hardwood cones - length equal to concrete cover over reinforcement
- high tensile steel coil wall tie (left in)

Procedure:

1. Erect one form side, align, plumb and check.
2. Insert and position reinforcement cage.
3. Erect other form side, align, plumb and check.
4. Cast wall.
Climbing Formwork or Lift Casting — this method can be employed on long walls, high walls or where the amount of concrete which can be placed in a shift is limited.

Typical Details —

100 x 50 softwood studs in pairs fixed to back of wall forms at 900 mm

1.200 high x 2.400 long plywood faced framed wall forms

formation level

reinforcement omitted for clarity

spacer if required

raking struts to be used as required

wall thickness

bolts and spacer tubes or steel coil wall ties

75mm high kicker

base cast and cured

75mm thick blinding

STAGE ONE OR FIRST LIFT

bolts and spacer tubes or steel coil wall ties

b bolt holes from first lift no longer required to be made good

hardwood folding wedges

through bolt fixings

NB. all subsequent lifts as for second lift

wall can be constructed using climbing shoes instead of studs

STAGE TWO OR SECOND LIFT
Casting Against Earth Face ~ this method can be an adaptation of the full height or climbing formwork systems. The latter uses a steel wire loop tie fixing to provide the support for the second and subsequent lifts.

Typical Details ~

100 x 50 x 2.325 long studs in pairs fixed to back of wall forms at 900 mm

recoverable bolt and washer

1.200 high x 2.400 long plywood faced framed wall forms

struts as required

sole plate fixed to base

earth face
plastic or hardwood cones
high tensile steel wire loop tie
75 mm high kicker
base cast and cured

STAGE ONE OR FIRST LIFT

first lift wall form reversed

bolt holes from first lift no longer required to be made good

hardwood folding wedges

formation level

NB. all subsequent lifts as shown for second lift

steel wire loop tie if more than two lifts required

first lift of wall cast and cured to support second lift formwork

steel wire loop ties cast in

STAGE TWO OR SECOND LIFT
Masonry units – these are an option where it is impractical or cost-ineffective to use temporary formwork to insitu concrete. Exposed brick or blockwork may also be a preferred finish. In addition to being a structural component, masonry units provide permanent formwork to reinforced concrete poured into the voids created by:

* Quetta bonded standard brick units, OR
* stretcher bonded standard hollow dense concrete blocks.
Construction — a reinforced concrete base is cast with projecting steel bars accurately located for vertical continuity. The wall may be built solid, e.g. Quetta bond, with voids left around the bars for subsequent grouting. Alternatively, the wall may be of wide cavity construction, where the exposed reinforcement is wrapped in ‘denso’ grease tape for protection against corrosion. Steel bars are threaded at the top to take a tensioning nut over a bearing plate.

Staged post-tensioning to high masonry retaining walls

Crib Retaining Walls — a system of precast concrete or treated timber components comprising headers and stretchers which interlock to form a 3 dimensional framework. During assembly the framework is filled with graded stone to create sufficient mass to withstand ground pressures.

Principle —

Note: height limited to 10 m with timber

Components —

Timber preserved with copper/chrome/arsenic

Reinforced concrete, sulphate resisting 50 N/mm²
Design of Retaining Walls ~ this should allow for the effect of hydrostatics or water pressure behind the wall and the pressure created by the retained earth (see page 226). Calculations are based on a 1m unit length of wall, from which it is possible to ascertain:

1. The resultant thrust

2. The overturning or bending moment

\[P = \frac{wh^2}{2} \]

\[\text{pressure at base (water)} = wh \text{ kg/m}^2 \]

\[P = \frac{wh^2}{2} \times \frac{1 - \sin \theta}{1 + \sin \theta} \]

\[\text{pressure at base (earth)} = wh \frac{1 - \sin \theta}{1 + \sin \theta} \text{ kg/m}^2 \]

\[P \text{, the resultant thrust, will act through the centre of gravity of the pressure diagram, i.e. at } h/3. \]

The overturning moment due to water is therefore:

\[\frac{wh^2}{2} \times \frac{h}{3} \text{ or } \frac{wh^3}{6} \]

and for earth:

\[\frac{wh^2}{2} \times \frac{1 - \sin \theta}{1 + \sin \theta} \times \frac{h}{3} \text{ or } \frac{wh^3}{6} \times \frac{1 - \sin \theta}{1 + \sin \theta} \]

Typical example ~

For water:

\[p = \frac{wh^2}{2} = \frac{1000 \times (3.3)^2}{2} = 5445 \text{ kg} \]

NB. kg \times \text{gravity} = \text{Newtons}

Therefore, 5445 kg \times 9.81 = 53.42 \text{ kN}

The overturning or bending moment will be: \(P \times h/3 = 53.42 \text{ kN} \times 1.1 \text{ m} = 58.8 \text{ kNm}\)

For earth:

\[p = \frac{wh^2}{2} \times \frac{1 - \sin \theta}{1 + \sin \theta} \]

\[p = \frac{1500 \times (3.3)^2}{2} \times \frac{1 - \sin 30^\circ}{1 + \sin 30^\circ} = 2723 \text{ kg} \text{ or } 26.7 \text{ kN} \]

The overturning or bending moment will be: \(P \times h/3 = 26.7 \text{ kN} \times 1.1 \text{ m} = 29.4 \text{ kNm}\)
A graphical design solution, to determine the earth thrust \((P)\) behind a retaining wall. Data from previous page:

\[
\begin{align*}
 h &= 3.300 \text{ m} \\
 \theta &= 30^\circ \\
 w &= 1500 \text{ kg/m}^3
\end{align*}
\]

Wall height is drawn to scale and plane of repose plotted. The wedge section is obtained by drawing the plane of rupture through an angle bisecting the plane of repose and vertical back of the wall. Dimension \(y\) can be scaled or calculated:

\[
\tan 30^\circ = \frac{y}{300}, \quad \text{and} \quad \tan 30^\circ = 0.5774
\]

therefore, \(y = 3.3 \times 0.5774 = 1.905 \text{ m}\)

Area of wedge section = \(\frac{3.3}{2} \times 1.905 \text{ m} = 3.143 \text{ m}^2\)

Volume of wedge per metre run of wall = \(3.143 \times 1 = 3.143 \text{ m}^3\)

Weight \(\ldots \ldots = 3.143 \times 1500 = 4715 \text{ kg}\)

Vector line \(A - B\) is drawn to a scale through centre of gravity of wedge section, line of thrust and plane of rupture to represent 4715 kg.

Vector line \(B - C\) is drawn at the angle of earth friction (usually same as angle of repose, i.e. 30\(^\circ\) in this case), to the normal to the plane of rupture until it meets the horizontal line \(C - A\).

Triangle \(ABC\) represents the triangle of forces for the wedge section of earth, so \(C - A\) can be scaled at 2723 kg to represent \((P)\), the earth thrust behind the retaining wall.
Open Excavations ~ one of the main problems which can be encountered with basement excavations is the need to provide temporary support or timbering to the sides of the excavation. This can be intrusive when the actual construction of the basement floor and walls is being carried out. One method is to use battered excavation sides cut back to a safe angle of repose thus eliminating the need for temporary support works to the sides of the excavation.

In economic terms the costs of plant and manpower to cover the extra excavation, backfilling and consolidating must be offset by the savings made by omitting the temporary support works to the sides of the excavation. The main disadvantage of this method is the large amount of free site space required.
Perimeter Trench Excavations ~ in this method a trench wide enough for the basement walls to be constructed is excavated and supported with timbering as required. It may be necessary for runners or steel sheet piling to be driven ahead of the excavation work. This method can be used where weak subsoils are encountered so that the basement walls act as permanent timbering whilst the mound or dumpling is excavated and the base slab cast. Perimeter trench excavations can also be employed in firm subsoils when the mechanical plant required for excavating the dumpling is not available at the right time.
Complete Excavation — this method can be used in firm subsoils where the centre of the proposed basement can be excavated first to enable the basement slab to be cast thus giving protection to the subsoil at formation level. The sides of excavation to the perimeter of the basement can be supported from the formation level using raking struts or by using raking struts pitched from the edge of the basement slab.

Typical Details —

- **Face timbering left projecting as safety barrier**
- **150 x 150 raking struts at 2.000 c/c**
- **150 x 150 puncheons at 2.000 c/c**
- **150 x 150 walings**
- **225 x 38 binders to both sides**
- **150 x 75 sole piece at formation level**

Raking Struts from Formation Level

- **Face timbering left projecting as safety barrier**
- **150 x 150 raking struts at 2.000 c/c**
- **150 x 150 puncheons at 2.000 c/c**
- **150 x 150 walings**
- **225 x 38 binders to both sides**
- **225 x 75 sole piece bolted to slab**
- **RC basement slab**

Raking Struts from Basement Slab
Excavating Plant — the choice of actual pieces of plant to be used in any construction activity is a complex matter taking into account many factors. Specific details of various types of excavators are given on pages 151 to 155. At this stage it is only necessary to consider basic types for particular operations. In the context of basement excavation two forms of excavator could be considered.

1. Backactors — these machines are available as cable rigged or hydraulic excavators suitable for trench and bulk excavating. Cable rigged backactors are usually available with larger bucket sizes and deeper digging capacities than the hydraulic machines but these have a more positive control and digging operation and are also easier to operate.

2. Face Shovels — these are robust machines designed to excavate above their own wheel or track level and are suitable for bulk excavation work. In basement work they will require a ramp approach unless they are to be lifted out of the excavation area by means of a crane. Like backactors face shovels are available as cable rigged or hydraulic machines.
Basement Construction ~ in the general context of buildings a basement can be defined as a storey which is below the ground storey and is therefore constructed below ground level. Most basements can be classified into one of three groups:-

1. Retaining Wall and Raft Basements - this is the general format for basement construction and consists of a slab raft foundation which forms the basement floor and helps to distribute the structural loads transmitted down the retaining walls.

2. Box and Cellular Raft Basements - similar method to above except that internal walls are used to transmit and spread loads over raft as well as dividing basement into cells.

3. Piled Basements - the main superstructure loads are carried to the basement floor level by columns where they are finally transmitted to the ground via pile caps and bearing piles. This method can be used where low bearing capacity soils are found at basement floor level.
Deep Basement Construction — basements can be constructed within a cofferdam or other temporary supported excavation (see Basement Excavations on pages 238 to 240) up to the point when these methods become uneconomic, unacceptable or both due to the amount of necessary temporary support work. Deep basements can be constructed by installing diaphragm walls within a trench and providing permanent support with ground anchors or by using the permanent lateral support given by the internal floor during the excavation period (see page 244). Temporary lateral support during the excavation period can be provided by lattice beams spanning between the diaphragm walls (see page 244).

Typical Ground Anchor Support Details:

- borehole formed with flight auger
- elastic length
- gravity grouted
- prestressed tendon forming ground anchor
- ground anchors (see page 408) type, spacing and pattern to design
- cast in-situ reinforced concrete diaphragm wall
- pocket for ground anchor anchorage
- excavation level
- position of next row of ground anchors
- proposed formation level

NB vertical ground anchors installed through the lowest floor can be used to overcome any tendency to floatation during the construction period.
Basement Construction with Permanent Lateral Support:
- ground floor slab and beams cast against earth and in trenches prior to excavation work for basement to provide permanent lateral support at top edge of walls.
- access hole for men and materials
- intermediate slab and beams cast before next stage of excavation
- excavation in progress
- formation level

Basement Construction with Temporary Lateral Support:
- steel lattice beams in one or two directions fixed to top edge of diaphragm walls to provide temporary lateral support
- future floor slabs and beams provide permanent lateral support
- excavation in progress
- formation level
Waterproofing Basements ~ basements can be waterproofed by one of three basic methods namely:-

1. Use of dense monolithic concrete walls and floor
2. Tanking techniques (see pages 247 & 248)
3. Drained cavity system (see page 249)

Dense Monolithic Concrete — the main objective is to form a watertight basement using dense high quality reinforced or prestressed concrete by a combination of good materials, good workmanship, attention to design detail and on site construction methods. If strict control of all aspects is employed a sound watertight structure can be produced but it should be noted that such structures are not always water vapourproof. If the latter is desirable some waterproof coating, lining or tanking should be used. The watertightness of dense concrete mixes depends primarily upon two factors:-

1. Water/cement ratio.
2. Degree of compaction.

The hydration of cement during the hardening process produces heat therefore to prevent early stage cracking the temperature changes within the hardening concrete should be kept to a minimum. The greater the cement content the more is the evolution of heat therefore the mix should contain no more cement than is necessary to fulfil design requirements. Concrete with a free water/cement ratio of 0.5 is watertight and although the permeability is three time more at a ratio of 0.6 it is for practical purposes still watertight but above this ratio the concrete becomes progressively less watertight. For lower water/cement ratios the workability of the mix would have to be increased, usually by adding more cement, to enable the concrete to be fully compacted.

Admixtures — if the ingredients of good design, materials and workmanship are present watertight concrete can be produced without the use of admixtures. If admixtures are used they should be carefully chosen and used to obtain a specific objective:-

1. Water-reducing admixtures — used to improve workability
2. Retarding admixtures — slow down rate of hardening
3. Accelerating admixtures — increase rate of hardening — useful for low temperatures — calcium chloride not suitable for reinforced concrete.
4. Water-repelling admixtures — effective only with low water head, will not improve poor quality or porous mixes.
5. Air-entraining admixtures — increases workability — lowers water content.
Joints ~ in general these are formed in basement constructions to provide for movement accommodation (expansion joints) or to create a convenient stopping point in the construction process (construction joints). Joints are lines of weakness which will leak unless carefully designed and constructed therefore they should be simple in concept and easy to construct.

Basement slabs ~ these are usually designed to span in two directions and as a consequence have relatively heavy top and bottom reinforcement. To enable them to fulfil their basic functions they usually have a depth in excess of 250mm. The joints, preferably of the construction type, should be kept to a minimum and if waterbars are specified they must be placed to ensure that complete compaction of the concrete is achieved.

Basement Walls ~ joints can be horizontal and/or vertical according to design requirements. A suitable waterbar should be incorporated in the joint to prevent the ingress of water. The top surface of a kicker used in conjunction with single lift pouring if adequately prepared by exposing the aggregate should not require a waterbar but if one is specified it should be either placed on the rear face or consist of a centrally placed mild steel strip inserted into the kicker whilst the concrete is still in a plastic state.

Waterproofing Basements
Mastic Asphalt Tanking ~ the objective of tanking is to provide a continuous waterproof membrane which is applied to the base slab and walls with complete continuity between the two applications. The tanking can be applied externally or internally according to the circumstances prevailing on site. Alternatives to mastic asphalt are polythene sheeting: bituminous compounds: epoxy resin compounds and bitumen laminates.

External Mastic Asphalt Tanking ~ this is the preferred method since it not only prevents the ingress of water it also protects the main structure of the basement from aggressive sulphates which may be present in the surrounding soil or ground water.

Typical External Tanking Details ~

25 x 25 splayed chase

half brick or 100mm block protective walling in cm.mt (1:3)

30 mm thick cement/sand grout if required to ensure good interface contact

20 mm thick vertical asphalt applied in three coats to rough concrete face

50 x 50 two coat angle fillet

150 mm 'pickup'

- reinforced concrete floor slab
- distribution bars
- main bars
- reinforced concrete basement wall
- main bars
- distribution bars
- reinforced concrete basement slab
- 50mm thick cement/sand (1:3) protective screed
- 30mm thick horizontal asphalt applied in three coats over concrete base

100mm thick mass concrete base
Internal Mastic Asphalt Tanking – this method should only be adopted if external tanking is not possible since it will not give protection to the main structure and unless adequately loaded may be forced away from the walls and/or floor by hydrostatic pressure. To be effective the horizontal and vertical coats of mastic asphalt must be continuous.

Typical Internal Tanking Details ~

25 x 25 splayed chase
reinforced concrete floor slab
distribution bars
main bars
20 mm thick vertical asphalt applied in three coats to rough concrete face
sleeve, duct or pipe through wall
50 x 50 two coat angle fillet
30 mm thick cement/sand grout if required to ensure good interface contact
brick or block loading wall
reinforced concrete loading slab

50 mm thick protective screed
75 mm thick blinding
30 mm thick horizontal asphalt applied in three coats over concrete base

NB. Brick basement walls can be built of keyed bricks or the joints can be raked out to a depth of 20 mm to provide key for asphalt tanking.
Drained Cavity System ~ this method of waterproofing basements can be used for both new and refurbishment work. The basic concept is very simple in that it accepts that a small amount of water seepage is possible through a monolithic concrete wall and the best method of dealing with such moisture is to collect it and drain it away. This is achieved by building an inner non-load bearing wall to form a cavity which is joined to a floor composed of special triangular tiles laid to falls which enables the moisture to drain away to a sump from which it is either discharged direct or pumped into the surface water drainage system. The inner wall should be relatively vapour tight or alternatively the cavity should be ventilated.

Typical Details ~

![Diagram of Drained Cavity System]

- TOP VIEW - HALF TILE
- BOTTOM VIEW - STANDARD TILE

- Reinforced concrete basement wall
- 50 mm wide cavity
- Brick or block non-load bearing inner wall
- Wall finish
- Damp-proof membrane
- Skirting
- Floor finish
- Precast concrete 'Dryangle' floor tiles
- 65 mm thick screed
- Reinforced concrete floor slab - upper laid to fall to sump
- 75 mm thick blinding
Basements benefit considerably from the insulating properties of the surrounding soil. However, that alone is insufficient to satisfy the typical requirements for wall and floor U-values of 0.35 and 0.30 W/m²K, respectively.

Refurbishment of existing basements may include insulation within dry lined walls and under the floor screed or particle board overlay. This should incorporate an integral vapour control layer to minimise risk of condensation.

External insulation of closed cell rigid polystyrene slabs is generally applied to new construction. These slabs combine low thermal conductivity with low water absorption and high compressive strength. The external face of insulation is grooved to encourage moisture run off. It is also filter faced to prevent clogging of the grooves. Backfill is granular.

Typical application -

Note: reinforcement in concrete omitted. See details on previous pages.

Tables and calculations to determine U-values for basements are provided in the Building Regulations, Approved Document L and in BS EN ISO 13370: Thermal performance of buildings.
Excavation — to hollow out — in building terms to remove earth to form a cavity in the ground.

Types of Excavation —

Over site — the removal of top soil (Building Regulations requirement.)

NB. Water in Excavations — this should be removed since it can:

1. Undermine sides of excavation.
2. Make it impossible to adequately compact bottom of excavation to receive foundations.
3. Cause puddling which can reduce the bearing capacity of the subsoil.
Trench Excavations ~ narrow excavations primarily for strip foundations and buried services — excavation can be carried out by hand or machine.

Typical Examples ~

Disadvantage ~ extra cost of over excavating and extra backfilling.

Advantage ~ no temporary support required to sides of excavation.

Disadvantage ~ sides of excavation may require some degree of temporary support.

Advantage ~ minimum amount of soil removed and therefore minimum amount of backfilling.

Pier Holes ~ isolated pits primarily used for foundation pads for columns and piers or for the construction of soakaways.

sides of excavation can be battered or straight as described above — deep pier holes may have to be over excavated in plan to provide good access to and good egress from the working area for both men and materials.

NB. legislation affecting safety in excavations is contained in the Construction (Health, Safety and Welfare) Regulations 1996.
Site Clearance and Removal of Top Soil ~
On small sites this could be carried out by manual means using hand held tools such as picks, shovels and wheelbarrows.
On all sites mechanical methods could be used the actual plant employed being dependent on factors such as volume of soil involved, nature of site and time elements.

Reduced Level Excavations ~
On small sites — hand processes as given above
On all sites mechanical methods could be used dependent on factors given above.

Trench and Pit Excavations ~
On small sites — hand processes as given above but if depth of excavation exceeds $1:200$ some method of removing spoil from the excavation will have to be employed.
On all sites mechanical methods could be used dependent on factors given above.

Excavations up to 2.5 m deep—Processes
All subsoils have different abilities in remaining stable during excavation works. Most will assume a natural angle of repose or rest unless given temporary support. The presence of ground water apart from creating difficult working conditions can have an adverse effect on the subsoil’s natural angle of repose.

Typical Angles of Repose ~
Excavations cut to a natural angle of repose are called battered.

DRAINED CLAY 45°
WET CLAY 16°
GRAVEL & DRY SAND 40°
WET SAND 22°

Factors for Temporary Support of Excavations ~

stability of subsoil

can excavation be completed before any temporary support is required?

nearness of surcharges such as buildings and vehicles

depth of excavation

water table level

Time factors such as period during which excavation will remain open and the time of year when work is carried out.

The need for an assessment of risk with regard to the support of excavations and protection of people within, is contained in the Construction (Health, Safety and welfare) Regulations 1996.
Temporary Support — in the context of excavations this is called timbering irrespective of the actual materials used. If the sides of the excavation are completely covered with timbering it is known as close timbering whereas any form of partial covering is called open timbering.

An adequate supply of timber or other suitable material must be available and used to prevent danger to any person employed in an excavation from a fall or dislodgement of materials forming the sides of an excavation.

A suitable barrier or fence must be provided to the sides of all excavations or alternatively they must be securely covered.

Materials must not be placed near to the edge of any excavation, nor must plant be placed or moved near to any excavation so that persons employed in the excavation are endangered.

Typical Example ~

- Wedges or pages as required
- 100 x 100 walings
- 225 x 50 poling boards as open timbering
- 100 x 100 struts at 1.800 c/c
- 100 x 100 puncheons at 1.800 c/c
- 225 x 75 sole piece

FIRM SUBSOIL

Adjustable metal struts to BS 4074 could be used if distance between walings is not more than 1.670

For further details and data see next page.
Poling Boards ~ a form of temporary support which is placed in position against the sides of excavation after the excavation work has been carried out. Poling boards are placed at centres according to the stability of the subsoils encountered.

Runners ~ a form of temporary support which is driven into position ahead of the excavation work either to the full depth or by a drive and dig technique where the depth of the runner is always lower than that of the excavation.

Trench Sheeting ~ form of runner made from sheet steel with a trough profile — can be obtained with a lapped joint or an interlocking joint.

Water ~ if present or enters an excavation a pit or sump should be excavated below the formation level to act as collection point from which the water can be pumped away.

Typical Example ~

225 x 50 runners as close timbering left projecting to form the barrier

100 x 100 walings

100 x 100 struts at 1.800 c/c

100 x 100 puncheons at 1.800 c/c

225 x 75 sole piece

all timbering sizes shown are typical—actual sizes should be selected from design charts or calculated from first principles

LOOSE OR WET SUBSOIL

formation level

300mm minimum
Concrete is a mixture of cement, fine aggregate, coarse aggregate, and water in controlled proportions and of a suitable quality.

Cement is a powder produced from clay and chalk or limestone. In general, most concrete is made with ordinary or rapid-hardening Portland cement, both types being manufactured to the recommendations of BS EN 197-1. Ordinary Portland cement is adequate for most purposes but has a low resistance to attack by acids and sulphates. Rapid-hardening Portland cement does not set faster than ordinary Portland cement but it does develop its working strength at a faster rate. For a concrete which must have an acceptable degree of resistance to sulphate attack, sulphate-resisting Portland cement made to the recommendations of BS 4027 could be specified.

Aggregates—shape, surface texture and grading (distribution of particle sizes) are factors which influence the workability and strength of a concrete mix. Fine aggregates are those materials which pass through a 5mm sieve whereas coarse aggregates are those materials which are retained on a 5mm sieve. Dense aggregates are those with a density of more than 1200kg/m³ for coarse aggregates and more than 1250kg/m³ for fine aggregates. These are detailed in BS EN 12620: Aggregates for Concrete. Lightweight aggregates include clinker; foamed or expanded blast furnace slag and exfoliated and expanded materials such as vermiculite, perlite, clay and sintered pulverized-fuel ash to BS 3797.

Water must be clean and free from impurities which are likely to affect the quality or strength of the resultant concrete. Pond, river, canal and sea water should not be used and only water which is fit for drinking should be specified.
Cement ~ whichever type of cement is being used it must be properly stored on site to keep it in good condition. The cement must be kept dry since contact with any moisture whether direct or airborne could cause it to set. A rotational use system should be introduced to ensure that the first batch of cement delivered is the first to be used.

Typical Storage Methods ~
- polythene or similar waterproof cover
- stored cement bags - total height not more than 1500
- well fitted lockable doors
- adjustable legs and bearing plate
- galv. steel sides
- watertight and fireproof ‘shed’
- raised dry platform
- cover weighted down around edges
- timber bearers or sleepers

SMALL CONTRACTS

LARGE CONTRACTS – for bagged cement watertight container as above. For bulk delivery loose cement, a cement storage silo.

Aggregates ~ essentials of storage are to keep different aggregate types and/or sizes separate. Store on a clean, hard, free draining surface and to keep the stored aggregates clean and free of leaves and rubbish.
Concrete Batching ~ a batch is one mixing of concrete and can be carried out by measuring the quantities of materials required by volume or weight. The main aim of both methods is to ensure that all consecutive batches are of the same standard and quality.

Volume Batching ~ concrete mixes are often quoted by ratio such as 1 : 2 : 4 (cement : fine aggregate or sand : coarse aggregate). Cement weighing 50 kg has a volume of 0.033 m³ therefore for the above mix 2 × 0.033 (0.066 m³) of sand and 4 × 0.033 (0.132 m³) of coarse aggregate is required. To ensure accurate amounts of materials are used for each batch a gauge box should be employed its size being based on convenient handling. Ideally a batch of concrete should be equated to using 50 kg of cement per batch. Assuming a gauge box 300 mm deep and 300 mm wide with a volume of half the required sand the gauge box size would be —

\[
\text{volume} = \text{length} \times \text{width} \times \text{depth} = \text{length} \times 300 \times 300
\]

\[
\text{length} = \frac{\text{volume}}{\text{width} \times \text{depth}} = \frac{0.033}{0.3 \times 0.3} = 0.366 \text{ m}
\]

For the above given mix fill gauge box once with cement, twice with sand and four times with coarse aggregate.

An allowance must be made for the bulking of damp sand which can be as much as 33\(\frac{1}{3}\)%. General rule of thumb unless using dry sand allow for 25% bulking.

Materials should be well mixed dry before adding water.
Weight Batching — this is a more accurate method of measuring materials for concrete than volume batching since it reduces considerably the risk of variation between different batches. The weight of sand is affected very little by its dampness which in turn leads to greater accuracy in proportioning materials. When loading a weighing hopper the materials should be loaded in a specific order —

1. Coarse aggregates — tends to push other materials out and leaves the hopper clean.
2. Cement — this is sandwiched between the other materials since some of the fine cement particles could be blown away if cement is put in last.
3. Sand or fine Aggregates — put in last to stabilise the fine lightweight particles of cement powder.

INDEPENDENT WEIGHT BATCHER INTEGRAL WEIGHT BATCHER

Typical Densities — cement — 1440 kg/m3 sand — 1600 kg/m3
coarse aggregate — 1440 kg/m3

Water/Cement Ratio — water in concrete has two functions -

1. Start the chemical reaction which causes the mixture to set into a solid mass.
2. Give the mix workability so that it can be placed, tamped or vibrated into the required position.

Very little water is required to set concrete (approximately 0·2 w/c ratio) the surplus evaporates leaving minute voids therefore the more water added to the mix to increase its workability the weaker is the resultant concrete. Generally w/c ratios of 0·4 to 0·5 are adequate for most purposes.
Concrete ~ a composite with many variables, represented by numerous gradings which indicate components, quality and manufacturing control.

Grade mixes: C7.5, C10, C15, C20, C25, C30, C35, C40, C45, C50, C55, and C60; F3, F4 and F5; IT2, IT2.5, and IT3.

\[\begin{align*}
C &= \text{Characteristic compressive strengths at 28 days (N/mm}^2) \\
F &= \text{Flexural} \\
IT &= \text{Indirect tensile} \\
\end{align*} \]

NB. If the grade is followed by a `P', e.g. C30P, this indicates a prescribed mix (see below).

Grades C7.5 and C10 ~ Unreinforced plain concrete.
Grades C15 and C20 ~ Plain concrete or if reinforced containing lightweight aggregate.
Grades C25 ~ Reinforced concrete containing dense aggregate.
Grades C30 and C35 ~ Post-tensioned reinforced concrete.
Grades C40 to C60 ~ Pre-tensioned reinforced concrete.

1. Standard Mix ~ BS guidelines provide this for minor works or in situations limited by available material and manufacturing data. Volume or weight batching is appropriate, but no grade over C30 is recognised.

2. Prescribed Mix ~ components are predetermined (to a recipe) to ensure strength requirements. Variations exist to allow the purchaser to specify particular aggregates, admixtures and colours. All grades permitted.

3. Designed Mix ~ concrete is specified to an expected performance. Criteria can include characteristic strength, durability and workability, to which a concrete manufacturer will design and supply an appropriate mix. All grades permitted.

4. Designated Mix ~ selected for specific applications. General (GEN) graded 0-4, 7.5~25 N/mm\(^2\) for foundations, floors and external works. Foundations (FND) graded 2, 3, 4A and 4B, 35 N/mm\(^2\) mainly for sulphate resisting foundations.

Paving (PAV) graded 1 or 2, 35 or 45 N/mm\(^2\) for roads and drives.

Reinforced (RC) graded 30, 35, 40. 45 and 50 N/mm\(^2\) mainly for prestressing.

See also BS EN 206-1: Concrete specification, and BS 8500-1 and 8500-2: Concrete.
Concrete Supply - this is usually geared to the demand or the rate at which the mixed concrete can be placed. Fresh concrete should always be used or placed within 30 minutes of mixing to prevent any undue drying out. Under no circumstances should more water be added after the initial mixing.

Small Batches - small easily transported mixers with output capacities of up to 100 litres can be used for small and intermittent batches. These mixers are versatile and robust machines which can be used for mixing mortars and plasters as well as concrete.

Medium to Large Batches - mixers with output capacities from 100 litres to 10 m3 with either diesel or electric motors. Many models are available with tilting or reversing drum discharge, integral weigh batching and loading hopper and a controlled water supply.

Ready Mixed Concrete - used mainly for large concrete batches of up to 6 m3. This method of concrete supply has the advantages of eliminating the need for site space to accommodate storage of materials, mixing plant and the need to employ adequately trained site staff who can constantly produce reliable and consistent concrete mixes. Ready mixed concrete supply depots also have better facilities and arrangements for producing and supplying mixed concrete in winter or inclement weather conditions. In many situations it is possible to place the ready mixed concrete into the required position direct from the delivery lorry via the delivery chute or by feeding it into a concrete pump. The site must be capable of accepting the 20 tonnes laden weight of a typical ready mixed concrete lorry with a turning circle of about 15'000. The supplier will want full details of mix required and the proposed delivery schedule.

Ref. BS EN 206-1: Concrete specification, performance, production and conformity.
Cofferdams ~ these are temporary enclosures installed in soil or water to prevent the ingress of soil and/or water into the working area with the cofferdam. They are usually constructed from interlocking steel sheet piles which are suitably braced or tied back with ground anchors. Alternatively a cofferdam can be installed using any structural material which will fulfil the required function.

Typical Cofferdam Details ~

- Steel kicking plate welded to waling
- UB end waling bolted to side UB walings through welded on end plates
- Single skin of interlocking steel sheet piles
- Corner piece
- UB side waling
- Upper struts and walings
- Kicking plate
- UB main strut bolted to side waling
- UB secondary struts fixed to end walings main struts
- End fixing plate welded to strut
- Lower struts and walings
- NB puncheons and wedges to be used as required
- Formation level
- "Cut off length" to suit soil and sheet pile type

For details of sheet pile sections and installation see next page.
Steel Sheet Piling ~ apart from cofferdam work steel sheet can be used as a conventional timbering material in excavations and to form permanent retaining walls. Three common formats of steel sheet piles with interlocking joints are available with a range of section sizes and strengths up to a usual maximum length of 18,000:

Installing Steel Sheet Piles ~ to ensure that the sheet piles are pitched and installed vertically a driving trestle or guide frame is used. These are usually purpose built to accommodate a panel of 10 to 12 pairs of piles. The piles are lifted into position by a crane and driven by means of percussion piling hammer or alternatively they can be pushed into the ground by hydraulic rams acting against the weight of the power pack which is positioned over the heads of the pitched piles.

Typical Installation Details ~

- last pair of piles to be part driven as anchor piles to next panel of piles
- spacer blocks
- timber trestle
- pitched panel of steel sheet piles
- first pair of piles part driven to act as anchor piles
- metal strap or bridle
- puncheon leg
- bearer

Note: Rot-proof PVC sheet piling is also available.
Caissons - these are box-like structures which are similar in concept to cofferdams but they usually form an integral part of the finished structure. They can be economically constructed and installed in water or soil where the depth exceeds 18,000. There are 4 basic types of caisson namely:

1. Box Caissons
2. Open Caissons
3. Monolithic Caissons
4. Pneumatic Caissons — used in water — see next page.

Typical Caissons Details —
prefabricated concrete caisson sunk by flooding or adding weight

BOX CAISSON
- diaphragm
- cross walls as required
- integral base slab
- void filled with insitu concrete after installation

OPEN CAISSON
- precast concrete wall unit(s) - often circular in plan
- insitu concrete plug or base
- void filled as required

LAND CAISSON
- excavation carried out inside caisson which sinks under own weight as walls are extended
- excavation level

MONOLITHIC CAISSON
- precast concrete caisson
- cast-in bentonite feed pipes
- excavation wells
- ground level
- bentonite slurry in 75mm wide annular space
- water level

usually of precast concrete and used in water being towed or floated into position and sunk — land caissons are of the open type and constructed insitu.
Pneumatic Caissons ~ these are sometimes called compressed air caissons and are similar in concept to open caissons. They can be used in difficult subsoil conditions below water level and have a pressurised lower working chamber to provide a safe dry working area. Pneumatic caissons can be made of concrete whereby they sink under their own weight or they can be constructed from steel with hollow walls which can be filled with water to act as ballast. These caissons are usually designed to form part of the finished structure.

Typical Pneumatic Caisson Details

- Air lock to operatives access shaft
- Upper platform and storage area
- Supply shaft
- Operatives access ladder shaft
- Materials supply shaft
- Concrete caisson walls
- Roof to working chamber
- Pressurised working chamber (maximum safe working pressure 310 kN/m²)

When required depth is reached a concrete slab or plug is cast over the formation level and chamber sealed with mass concrete.
Underpinning ~ the main objective of most underpinning work is to transfer the load carried by a foundation from its existing bearing level to a new level at a lower depth. Underpinning techniques can also be used to replace an existing weak foundation. An underpinning operation may be necessary for one or more of the following reasons:-

1. Uneven Settlement — this could be caused by uneven loading of the building, unequal resistance of the soil action of tree roots or cohesive soil settlement.

2. Increase in Loading — this could be due to the addition of an extra storey or an increase in imposed loadings such as that which may occur with a change of use.

3. Lowering of Adjacent Ground — usually required when constructing a basement adjacent to existing foundations.

General Precautions ~ before any form of underpinning work is commenced the following precautions should be taken :-

1. Notify adjoining owners of proposed works giving full details and temporary shoring or tying.

2. Carry out a detailed survey of the site, the building to be underpinned and of any other adjoining or adjacent building or structures. A careful record of any defects found should be made and where possible agreed with the adjoining owner(s) before being lodged in a safe place.

3. Indicators or ‘tell tales’ should be fixed over existing cracks so that any subsequent movements can be noted and monitored.

4. If settlement is the reason for the underpinning works a thorough investigation should be carried out to establish the cause and any necessary remedial work put in hand before any underpinning works are started.

5. Before any underpinning work is started the loads on the building to be underpinned should be reduced as much as possible by removing the imposed loads from the floors and installing any props and/or shoring which is required.

6. Any services which are in the vicinity of the proposed underpinning works should be identified, traced, carefully exposed, supported and protected as necessary.
Underpinning to Walls ~ to prevent fracture, damage or settlement of the wall(s) being underpinned the work should always be carried out in short lengths called legs or bays. The length of these bays will depend upon the following factors:-

1. Total length of wall to be underpinned.
2. Wall loading.
3. General state of repair and stability of wall and foundation to be underpinned.
5. Estimated spanning ability of existing foundation.

Generally suitable bay lengths are:-

1.000 to 1.500 for mass concrete strip foundations supporting walls of traditional construction.

1.500 to 3.000 for reinforced concrete strip foundations supporting walls of moderate loading.

In all the cases the total sum of the unsupported lengths of wall should not exceed 25% of the total wall length.

The sequence of bays should be arranged so that working in adjoining bays is avoided until one leg of underpinning has been completed, pinned and cured sufficiently to support the wall above.

Typical Underpinning Schedule ~

(schedule shows 2 bay working - once all the underpinning legs have been completed the working bays will have combined to form a trench enabling a complete and final check to be made before backfilling.

bay width to give adequate working space - minimum 1.000

wall and foundation to be underpinned

1.500 long working bays)
Typical Traditional Underpinning Details -

Datum line

Board and plumb line

Timbering as required

Projection to existing foundation removed

Consolidated backfill placed in trench after completion and inspection of all the underpinning work

Existing wall

Existing foundation

Final pinning

Hand placed and compacted 1:12 concrete filling

Underpinning wall

Dowel bars

New foundation

Underside of foundation cleaned to receive final pinning

Topped ends to underpinning wall

25mm dia. x 400mm long dowel bars

New mass concrete foundation

Underpinning bay - Typical section

Existing wall

Underpinning bay - Typical elevation

25mm thick rich 'dry' well rammed cement mortar (1:2 or 3) - allow 12 hours for wall to settle before final pinning
Jack Pile Underpinning — this method can be used when the depth of a suitable bearing capacity subsoil is too deep to make traditional underpinning uneconomic. Jack pile underpinning is quiet, vibration free and flexible since the pile depth can be adjusted to suit subsoil conditions encountered. The existing foundations must be in a good condition since they will have to span over the heads of the pile caps which are cast onto the jack pile heads after the hydraulic jacks have been removed.
Needle and Pile Underpinning ~ this method of underpinning can be used where the condition of the existing foundation is unsuitable for traditional or jack pile underpinning techniques. The brickwork above the existing foundation must be in a sound condition since this method relies on the 'arching effect' of the brick bonding to transmit the wall loads onto the needles and ultimately to the piles. The piles used with this method are usually small diameter bored piles — see page 207.

Alternative Layouts ~

TRADITIONAL - simple

ZIG-ZAG - uses less piles
'Pynford' Stool Method of Underpinning ~ this method can be used where the existing foundations are in a poor condition and it enables the wall to be underpinned in a continuous run without the need for needles or shoring. The reinforced concrete beam formed by this method may well be adequate to spread the load of the existing wall or it may be used in conjunction with other forms of underpinning such as traditional and jack pile.

Typical Details ~

Stage 1 - holes formed in wall to receive steel or precast concrete stools

Stage 2 - stools inserted and pinned to soffit of brickwork over opening

Stage 3 - brickwork between pinned stools removed to leave wall supported on pinned stools

Stage 4 - reinforcement fabricated and placed around pinned stools cast

Stage 5 - formwork erected and beam removed, beam allowed to cure before being pinned to underside of wall

Stage 6 - formwork to beam side finish beam - stools left in

precast concrete spreader pads
‘Bullivant’ Patent Angle Piling ~ this is a much simpler alternative to traditional underpinning techniques, applying modern concrete drilling equipment to achieve cost benefits through time saving. The process is also considerably less disruptive, as large volumes of excavation are avoided. Where sound bearing strata can be located within a few metres of the surface, wall stability is achieved through lined reinforced concrete piles installed in pairs, at opposing angles. The existing floor, wall and foundation are pre-drilled with air flushed percussion auger, giving access for a steel lining to be driven through the low grade/clay subsoil until it impacts with firm strata. The lining is cut to terminate at the underside of the foundation and the void steel reinforced prior to concreting.

In many situations it is impractical to apply angle piling to both sides of a wall. Subject to subsoil conditions being adequate, it may be acceptable to apply remedial treatment from one side only. The piles will need to be relatively close spaced.
Underpinning Columns ~ columns can be underpinned in the same manner as walls using traditional or jack pile methods after the columns have been relieved of their loadings. The beam loads can usually be transferred from the columns by means of dead shores and the actual load of the column can be transferred by means of a pair of beams acting against a collar attached to the base of the column shaft.

Typical Details ~

- pair of precast concrete short beams bolted together to form collar
- 25mm deep chase
- pair of precast concrete or steel beams bolted together
- hydraulic jack
- reinforced concrete column
- bored or jack pile
- concrete bearing pad as alternative to pile
- foundation to be underpinned
- kentledge of precast concrete blocks or similar to act as counterweight
- pair of steel channels with web plates welded to steel column
- pair of steel or precast concrete beams bolted together
- pair of bored or jack piles
- foundation to be underpinned
Classification of Water ~ water can be classified by its relative position to or within the ground thus —

- Surface water — run off from an earth surface ~10% of water falling onto surface but on hard paved areas run off is usually 75 to 90%.
- Ground water — water held in the subsoil and is usually percolating down towards the water table.
- Subsoil water — water held in the ground below the water table.

Problems of Water in the Subsoil ~
1. A high water table could cause flooding during wet periods.
2. Subsoil water can cause problems during excavation works by its natural tendency to flow into the voids created by the excavation activities.
3. It can cause an unacceptable humidity level around finished buildings and structures.

Control of Ground Water ~ this can take one of two forms which are usually referred to as temporary and permanent exclusion —

- Temporary Exclusion:
 - Ground level
 - Formation level
 - Downtrend of water table
 - Water table lowered by pumping

- Permanent Exclusion:
 - Ground level
 - Formation level
 - Flow of ground water arrested by barrier
 - Impermeable barrier
Permanent Exclusion ~ this can be defined as the insertion of an impermeable barrier to stop the flow of water within the ground.

Temporary Exclusion ~ this can be defined as the lowering of the water table and within the economic depth range of 1:500 can be achieved by subsoil drainage methods, for deeper treatment a pump or pumps are usually involved.

Simple Sump Pumping ~ suitable for trench work and/or where small volumes of water are involved.

Sizing Pumps ~
allow for friction loss due to fittings in terms of pipe length – added to actual pipe length
allowances for friction and head loss available from manufacturers charts or tables
calculate or estimate water flow

allow for loss of head due to friction in pipe length – i.e. pipe length including an allowance for bends

total head = suction lift + delivery head + loss of head

sump
Jetted Sumps ~ this method achieves the same objectives as the simple sump methods of dewatering (previous page) but it will prevent the soil movement associated with this and other open sump methods. A borehole is formed in the subsoil by jetting a metal tube into the ground by means of pressurised water, to a depth within the maximum suction lift of the extract pump. The metal tube is withdrawn to leave a void for placing a disposable wellpoint and plastic suction pipe. The area surrounding the pipe is filled with coarse sand to function as a filtering media.

Typical Example ~
Wellpoint Systems ~ method of lowering the water table to a position below the formation level to give a dry working area. The basic principle is to jet into the subsoil a series of wellpoints which are connected to a common header pipe which is connected to a vacuum pump. Wellpoint systems are suitable for most subsoils and can encircle an excavation or be laid progressively alongside as in the case of a trench excavation. If the proposed formation level is below the suction lift capacity of the pump a multi-stage system can be employed — see next page.

Typical Details ~

- 38mm dia. jetting and riser pipe
- 150 mm dia. lightweight header pipe
- 75mm diameter slotted strainer cover
- perforated inner tube
- water flows through strainer cover and perforated tube into riser pipe
- retaining collar
- jetting shoe
- rubber ball valve
- riser pipe and wellpoint under suction from pump
- stop valve flexible connection pipe

Jetting pipe connected to high pressure jetting pump and the water jet emitted from the jetting shoe moves soil particles away enabling wellpoint to sink

Dewatering
Ground Water Control—Temporary Exclusion

Typical Wellpoint Progress Line Installation Details:
- header pipe
- to pump
- wellpoints at 600 °C
- blank ends at head and tail of header pipe
- trench excavation
- new service pipe
- header pipes can be extended as excavation progresses and removed from tail after backfilling

Typical Multi-stage Wellpoint Installation Details:
- ground encircling or ring header pipe connected to pump level
- 1.500 wide level earth platform for header pipe
- original water table
- upper stage wellpoints
- lower stage wellpoints
- for details of wellpoints see previous page

Water table lowered by pumping from upper stage wellpoints only

Temporary support work to sides of excavation

Formation level

Water table lowered by pumping from both wellpoint stages
Thin Grouted Membranes - these are permanent curtain or cut-off non structural walls or barriers inserted in the ground to enclose the proposed excavation area. They are suitable for silts and sands and can be installed rapidly but they must be adequately supported by earth on both sides. The only limitation is the depth to which the formers can be driven and extracted.

Typical Details -

Flexible pipe to grout machine

Grout injection pipe fixed to web or face of former section

Driven former section being extracted

Driven formers of beam, column, sheet pile, box or similar steel section

Ground level

Cement grout forming a thin membrane in void left by former section

Silt or sand subsoil

Thin grouted membrane or cut off wall

Driven former sections

Grout injection pipe
Contiguous Piling ~ this forms a permanent structural wall of interlocking bored piles. Alternate piles are bored and cast by traditional methods after which the interlocking piles are bored using a special auger or cutter. This system is suitable for most types of subsoil and has the main advantages of being economical on small and confined sites; capable of being formed close to existing foundations and can be installed with the minimum of vibration and noise. Ensuring a complete interlock of all piles over the entire length may be difficult to achieve in practice therefore the exposed face of the piles is usually covered with a mesh or similar fabric and face with rendering or sprayed concrete. Alternatively a reinforced concrete wall could be cast in front of the contiguous piling. This method of ground water control is suitable for structures such as basements, road underpasses and underground car parks.
Diaphragm Walls — these are structural concrete walls which can be cast insitu (usually by the bentonite slurry method) or constructed using precast concrete components (see next page). They are suitable for most subsoils and their installation generates only a small amount of vibration and noise making them suitable for works close to existing buildings. The high cost of these walls makes them uneconomic unless they can be incorporated into the finished structure. Diaphragm walls are suitable for basements, underground car parks and similar structures.

Typical Cast Insitu Concrete Diaphragm Wall Details —

ready mixed concrete supply

tremie pipe placing

tromme return, storage and draw off tanks

displaced bentonite pumped to storage

kelly bar

standard crane power unit

pcc lined guide trench

reinforcement

stop end pipes as formers for interlocking joint between panels

placed concrete

panel 1

length of panel = 3 × hydraulic grab width

panel 9

NB. Bentonite is a controlled mixture of fuller's earth and water which produces a mud or slurry which has thixotropic properties and exerts a pressure in excess of earth + hydrostatic pressure present on sides of excavation.
Precast Concrete Diaphragm Walls ~ these walls have the same applications as their insitu counterparts and have the advantages of factory produced components but lack the design flexibility of cast insitu walls. The panel or post and panel units are installed in a trench filled with a special mixture of bentonite and cement with a retarder to control the setting time. This mixture ensures that the joints between the wall components are effectively sealed. To provide stability the panels or posts are tied to the retained earth with ground anchors.

Typical Precast Concrete Diaphragm Wall Details ~

- lifting lugs
- pcc trench guide walls to hold units in place whilst slurry sets
- ground anchor
- pocket for ground anchor anchorage
- face of wall units coated with special compound to reduce the adhesion of bentonite
- trench filled with special bentonite slurry as excavation proceeds
- formation level
- bentonite remains in place
- PCC PANEL DIAPHRAGM WALL
- ground anchors
- PCC POST AND PANEL DIAPHRAGM WALL
Grouting Methods ~ these techniques are used to form a curtain or cut off wall in high permeability soils where pumping methods could be uneconomic. The curtain walls formed by grouting methods are non-structural therefore adequate earth support will be required and in some cases this will be a distance of at least 4.000 from the face of the proposed excavation. Grout mixtures are injected into the soil by pumping the grout at high pressure through special injection pipes inserted in the ground. The pattern and spacing of the injection pipes will depend on the grout type and soil conditions.

Grout Types ~

1. Cement Grouts ~ mixture of neat cement and water cement sand up to 1 : 4 or PFA (pulverized fuel ash) cement to a 1 : 1 ratio. Suitable for coarse grained soils and fissured and jointed rock strata.

2. Chemical Grouts ~ one shot (premixed) of two shot (first chemical is injected followed immediately by second chemical resulting in an immediate reaction) methods can be employed to form a permanent gel in the soil to reduce its permeability and at the same time increase the soil’s strength. Suitable for medium to coarse sands and gravels.

3. Resin Grouts ~ these are similar in application to chemical grouts but have a low viscosity and can therefore penetrate into silty fine sands.

Typical Cement Grouting Details ~

- cement
- grout mixer which delivers grout to agitator in batches
- metered water supply
- agitator
- grout pipe
- grout pump
- bypass
- control valves
- pressure gauges
- injection pipes
- return pipe
Ground Freezing Techniques — this method is suitable for all types of saturated soils and rock and for soils with a moisture content in excess of 8% of the voids. The basic principle is to insert into the ground a series of freezing tubes to form an ice wall thus creating an impermeable barrier. The treatment takes time to develop and the initial costs are high therefore it is only suitable for large contracts of reasonable duration. The freezing tubes can be installed vertically for conventional excavations and horizontally for tunneling works. The usual circulating brines employed are magnesium chloride and calcium chloride with a temperature of \(-15^\circ\) to \(-25^\circ\)C which would take 10 to 17 days to form an ice wall 1,000 thick. Liquid nitrogen could be used as the freezing medium to reduce the initial freezing period if the extra cost can be justified.

Typical Ground Freezing Details

- Brine return pipe
- All pipes above ground level insulated with foamed polyurethane
- White reflective polyethylene film lining to prevent thawing by radiant heat to excavation faces as required
- 100 to 150mm diameter outer tube
- Steel freezing tubes at 1,000%
- 38 to 75mm diameter inner tube
- All excavation work takes place inside ice walls
- 1,000 thick ice wall
Soil Investigation – before a decision is made as to the type of foundation which should be used on any particular site a soil investigation should be carried out to establish existing ground conditions and soil properties. The methods which can be employed together with other sources of information such as local knowledge, ordnance survey and geological maps, mining records and aerial photography should be familiar to students at this level. If such an investigation reveals a naturally poor subsoil or extensive filling the designer has several options:-

1. Not to Build – unless a new and suitable site can be found building is only possible if the poor ground is localised and the proposed foundations can be designed around these areas with the remainder of the structure bridging over these positions.

2. Remove and Replace – the poor ground can be excavated, removed and replaced by compacted fills. Using this method there is a risk of differential settlement and generally for depths over 4:000 it is uneconomic.

3. Surcharging – this involves preloading the poor ground with a surcharge of aggregate or similar material to speed up settlement and thereby improve the soil’s bearing capacity. Generally this method is uneconomic due to the time delay before actual building operations can commence which can vary from a few weeks to two or more years.

4. Vibration – this is a method of strengthening ground by vibrating a granular soil into compacted stone columns either by using the natural coarse granular soil or by replacement – see pages 287 and 288.

5. Dynamic Compaction – this is a method of soil improvement which consists of dropping a heavy weight through a considerable vertical distance to compact the soil and thus improve its bearing capacity and is especially suitable for granular soils – see page 289.

6. Jet Grouting – this method of consolidating ground can be used in all types of subsoil and consists of lowering a monitor probe into a 150mm diameter prebored guide hole. The probe has two jets the upper of which blasts water, concentrated by compressed air to force any loose material up the guide to ground level. The lower jet fills the void with a cement slurry which sets into a solid mass – see page 290.
Ground Vibration - the objective of this method is to strengthen the existing soil by rearranging and compacting coarse granular particles to form stone columns with the ground. This is carried out by means of a large poker vibrator which has an effective compacting radius of 1.5 to 2.7. On large sites the vibrator is inserted on a regular triangulated grid pattern with centres ranging from 1.5 to 3. In coarse grained soils extra coarse aggregate is tipped into the insertion positions to make up levels as required whereas in clay and other fine particle soils the vibrator is surged up and down enabling the water jetting action to remove the surrounding soft material thus forming a borehole which is backfilled with a coarse granular material compacted insitu by the vibrator. The backfill material is usually of 20 to 70mm size of uniform grading within the chosen range. Ground vibration is not a piling system but a means of strengthening ground to increase the bearing capacity within a range of 200 to 500kN/m².

Typical Details -

- lifting pulley
- manifold section
- follower section(s)
- top jets to assist in removal
- vibration isolator
- vibrator section containing hydraulic motor with rotating eccentric
- compacted stone column

Typical Vibrator Data -
- length - 5.000
- weight - 2 tonnes
- vibration - 30 to 60 hz.

- standard track mounted crane
- water and hydraulic hoses
- side fins to prevent vibrator twisting
- nose cone housing lower jetting nozzle
Sand Compaction — applied to non-cohesive subsoils where the granular particles are rearranged into a denser condition by poker vibration.

The crane-suspended vibrating poker is water-jetted into the ground using a combination of self weight and water displacement of the finer soil particles to penetrate the ground. Under this pressure, the soil granules compact to increase in density as the poker descends. At the appropriate depth, which may be determined by building load calculations or the practical limit of plant (generally 30m max.), jetting ceases and fine aggregates or sand are infilled around the poker. The poker is then gradually withdrawn compacting the granular fill in the process. Compaction continues until sand fill reaches ground level. Spacing of compaction boreholes is relatively close to ensure continuity and an integral ground condition.

Sand compaction procedure

1. Vibrating poker penetrates ground under full water jet pressure.
2. At design depth, water pressure is reduced and sand fill introduced and compacted.
3. With resistance to compaction, poker is raised and lowered to consolidate further sand.
Dynamic Compaction ~ this method of ground improvement consists of dropping a heavy weight from a considerable height and is particularly effective in granular soils. Where water is present in the subsoil, trenches should be excavated to allow the water to escape and not collect in the craters formed by the dropped weight. The drop pattern, size of weight and height of drop are selected to suit each individual site but generally 3 or 4 drops are made in each position forming a crater up to 2.500 deep and 5.000 in diameter. Vibration through the subsoil can be a problem with dynamic compaction operations therefore the proximity and condition of nearby buildings must be considered together with the depth position and condition of existing services on site.

Typical Details ~

NB. Final ground level after compaction treatment and final levelling could be up to 1.500 lower than original ground level.
Jet Grouting — this is a means of consolidating ground by lowering into preformed bore holes a monitor probe. The probe is rotated and the sides of the bore hole are subjected to a jet of pressurised water and air from a single outlet which enlarges and compacts the bore hole sides. At the same time a cement grout is being introduced under pressure to fill the void being created. The water used by the probe and any combined earth is forced up to the surface in the form of a sludge. If the monitor probe is not rotated grouted panels can be formed. The spacing, depth and layout of the bore holes is subject to specialist design.

Soil Stabilisation and Improvement

Typical Details —
crawler mounted
power unit

motor — raises, lowers and rotates probe

guide frame

rotating monitor probe

150 mm diameter bore hole

up to 40,000

150 mm diameter bore hole

water/air jet

cement grout jet

grouted column up to 2,000 diameter

crawler mounted power unit

motor — raises and lowers probe
guide frame

sludge

preformed bore holes

static monitor probe

water/air jet

cement grout jet

panel lengths up to 2,400

290
Green-Field — land not previously built upon. Usually part of the ‘green-belt’ surrounding urban areas, designated inappropriate for development in order to preserve the countryside. Limited development for agricultural purposes only may be permitted on ‘green-belt’ land.

Brown-Field — derelict land formerly a developed site and usually associated with previous construction of industrial buildings. UK government has set an objective to build 60% of the 4 million new homes required by 2016 on these sites.

Site Survey — essential that a geo-technical survey is undertaken to determine whether contaminants are in the soil and ground water. Of particular concern are: acids, salts, heavy metals, cyanides and coal tars, in addition to organic materials which decompose to form the highly explosive gas, methane. Analysis of the soil will determine a ‘trigger threshold value’, above which it will be declared sensitive to the end user. For example, a domestic garden or children’s play area will have a low value relative to land designated for a commercial car park.

Site Preparation — when building on sites previously infilled with uncontaminated material, a reinforced raft type foundation may be adequate for light structures. Larger buildings will justify soil consolidation and compaction processes to improve the bearing capacity. Remedial measures for subsoils containing chemicals or other contaminants are varied.

Legislation — the Environment Protection Act of 1990 attempted to enforce responsibility on local authorities to compile a register of all potentially contaminated land. This proved unrealistic and too costly due to inherent complexities. Since then, requirements under the Environment Act 1995 and subsequent Planning and Policy Guidance (PPGs) issued by the ODPM, have made this more of a planning issue. It has become the responsibility of developers to conduct site investigations and to present details of proposed remedial measures as part of their planning application.
The traditional low-technology method for dealing with contaminated sites has been to excavate the soil and remove it to places licensed for depositing. However, with the increase in building work on brown-field sites, suitable dumps are becoming scarce. Added to this is the reluctance of ground operators to handle large volumes of this type of waste. Also, where excavations exceed depths of about 5 m, it becomes less practical and too expensive. Alternative physical, biological or chemical methods of soil treatment may be considered.

Encapsulation – insitu enclosure of the contaminated soil. A perimeter trench is taken down to rock or other sound strata and filled with an impervious agent such as Bentonite clay. An impermeable horizontal capping is also required to link with the trenches. A high-specification barrier is necessary where liquid or gas contaminants are present as these can migrate quite easily. A system of monitoring soil condition is essential as the barrier may decay in time. Suitable for all types of contaminant.

Soil washing – involves extraction of the soil, sifting to remove large objects and placing it in a scrubbing unit resembling a huge concrete mixer. Within this unit water and detergents are added for a basic wash process, before pressure spraying to dissolve pollutants and to separate clay from silt. Eliminates fuels, metals and chemicals.

Vapour extraction – used to remove fuels or industrial solvents and other organic deposits. At variable depths, small diameter boreholes are located at frequent intervals. Attached to these are vacuum pipes to draw air through the contaminated soil. The contaminants are collected at a vapour treatment processing plant on the surface, treated and evaporated into the atmosphere. This is a slow process and it may take several months to cleanse a site.

Electrolysis – use of low voltage d.c. in the presence of metals. Electricity flows between an anode and cathode, where metal ions in water accumulate in a sump before pumping to the surface for treatment.
BIOLOGICAL
Phytoremediation — the removal of contaminants by plants which will absorb harmful chemicals from the ground. The plants are subsequently harvested and destroyed. A variant uses fungal degradation of the contaminants.

Bioremediation — stimulating the growth of naturally occurring microbes. Microbes consume petrochemicals and oils, converting them to water and carbon dioxide. Conditions must be right, i.e. a temperature of at least 10°C with an adequate supply of nutrients and oxygen. Untreated soil can be excavated and placed over perforated piping, through which air is pumped to enhance the process prior to the soil being replaced.

CHEMICAL
Oxidation — sub-soil boreholes are used for the pumped distribution of liquid hydrogen peroxide or potassium permanganate. Chemicals and fuel deposits convert to water and carbon dioxide.

Solvent extraction — the sub-soil is excavated and mixed with a solvent to break down oils, grease and chemicals that do not dissolve in water.

THERMAL
Thermal treatment (off site) — an incineration process involving the use of a large heating container/oven. Soil is excavated, dried and crushed prior to heating to 2500°C, where harmful chemicals are removed by evaporation or fusion.

Thermal treatment (insitu) — steam, hot water or hot air is pressure-injected through the soil. Variations include electric currents and radio waves to heat water in the ground to become steam. Evaporates chemicals.

5 SUPERSTRUCTURE

CHOICE OF MATERIALS
BRICK AND BLOCK WALLS
GAS RESISTANT MEMBRANES
ARCHES AND OPENINGS
WINDOWS, GLASS AND GLAZING
DOMESTIC AND INDUSTRIAL DOORS
TIMBER FRAME CONSTRUCTION
REINFORCED CONCRETE FRAMED STRUCTURES
FORMWORK
PRECAST CONCRETE FRAMES
STRUCTURAL STEELWORK
COMPOSITE TIMBER BEAMS
TIMBER PITCHED AND FLAT ROOFS
TIMBER DECAY AND TREATMENT
LONG SPAN ROOFS
SHELL ROOF CONSTRUCTION
RAINSCREEN CLADDING
PANEL WALLS AND CURTAIN WALLING
CONCRETE CLADDINGS
PRESTRESSED CONCRETE
THERMAL INSULATION
THERMAL BRIDGING
ACCESS FOR THE DISABLED
STAGE 1

Consideration to be given to the following:

1. Building type and usage.
2. Building owner's requirements and preferences.
3. Local planning restrictions.
4. Legal restrictions and requirements.
5. Site restrictions.
6. Capital resources.
7. Future policy in terms of maintenance and adaptation.

STAGE 2

Decide on positions, sizes and shapes of openings.

STAGE 3

Decide on style, character and materials for openings.

STAGE 4

Decide on basic materials for fabric of roof and walls.

STAGE 5

Review all decisions and make changes if required.
Bricks ~ these are walling units within a length of 337.5 mm, a width of 225 mm and a height of 112.5 mm. The usual size of bricks in common use is length 215 mm, width 102.5 mm and height 65 mm and like blocks they must be laid in a definite pattern or bond if they are to form a structural wall. Bricks are usually made from clay (BS 3921, BS EN 772-3 and BS EN 772-7) or from sand and lime (BS 187) and are available in a wide variety of strengths, types, textures, colours and special shaped bricks to BS 4729.
Typical Details ~
Bonding ~ an arrangement of bricks in a wall, column or pier laid to a set pattern to maintain an adequate lap.

Purposes of Brick Bonding ~
1. Obtain maximum strength whilst distributing the loads to be carried throughout the wall, column or pier.
2. Ensure lateral stability and resistance to side thrusts.
3. Create an acceptable appearance.

Lap Forms ~

HALF BONDING
used in half brick thick walls built in stretcher bond

QUARTER BONDING
used in most bonds built with standard bricks

THIRD BONDING
used in bonds built with metric bricks

Simple Bonding Rules ~
1. Bond is set out along length of wall working from each end to ensure that no vertical joints are above one another in consecutive courses.

```
    | quarter bat or queen closer end header
to maintain quarter bonding or quoin

    course 2
    course 1
```

NB all odd numbered courses set out as course 1 and all even numbered courses set out as course 2

2. Walls which are not in exact bond length can be set out thus –

BROKEN BOND

REVERSED BOND

3. Transverse or cross joints continue unbroken across the width of wall unless stopped by a face stretcher.
English Bond — formed by laying alternate courses of stretchers and headers it is one of the strongest bonds but it will require more facing bricks than other bonds (89 facing bricks per m²).

Typical Example ~

![Diagram of English Bond]

- **Attached pier or pilaster** — for alternative bonding arrangement see page 300
- **Queen closer**
- **Plan on odd numbered courses**
- **Plan on even numbered courses**
- **Elevation**
Flemish Bond ~ formed by laying headers and stretchers alternately in each course. Not as strong as English bond but is considered to be aesthetically superior uses less facing bricks. (79 facing bricks per m²)

Typical Example

[Diagram of Flemish Bond with labeled parts: attached pier or pilaster, 3/4 bats, 1/2 bat, attached pier, queen closer, stopped end, return wall with reversed bond, attached pier, queen closer, return wall with reversed bond, see page 298, queen closer, plan on odd numbered courses, plan on even numbered courses, elevation]
ENGLISH GARDEN WALL BOND - gives quick lateral spread of load - uses less facings than English bond.

FLEMISH GARDEN WALL BOND - enables a fair face to be kept on both sides of a one brick thick wall.

ENGLISH CROSS BOND - header placed next to end stretcher in every other stretcher course which thus staggers stretchers enabling patterns or diapers to be picked out in different texture or coloured bricks.

RAT TRAP BOND - uses brick on edge courses - hollow pockets or voids reduce total weight of wall and by the bricks on edge there is an overall saving of materials.
Stack Bonding — the quickest, easiest and most economical bond to lay, as there is no need to cut bricks or to provide special sizes. Visually the wall appears unbonded as continuity of vertical joints is structurally unsound, unless wire bed-joint reinforcement is placed in every horizontal course, or alternate courses where loading is moderate. In cavity walls, wall ties should be closer than normal at 600 mm max. spacing horizontally and 225 mm max. spacing vertically and staggered.

Horizontal stack bond

Vertical stack bond

Application — this distinctive uniform pattern is popular as non-structural infill panelling to framed buildings and for non-load bearing exposed brickwork partitions.

Reinforced stack bond

cavity wall ties at 600 mm max. horizontal spacing and 3 courses max. vertically

bed joints reinforced with high tensile mesh woven stainless steel wire in 25 or 75 m standard rolls
Attached Piers ~ the main function of an attached pier is to give lateral support to the wall of which it forms part from the base to the top of the wall. It also has the subsidiary function of dividing a wall into distinct lengths whereby each length can be considered as a wall. Generally walls must be tied at end to an attached pier, buttressing or return wall.

Typical Examples ~

![Diagram of attached piers](image)

Requirements for the external wall of a small single storey non-residential building or annex exceeding 2.5 m in length or height and of floor area not exceeding 36 m² ~

- Minimum thickness, 90 mm, i.e. 102.5 mm brick or 100 mm block.
- Built solid of bonded brick or block masonry and bedded in cement mortar.
- Surface mass of masonry, minimum 130 kg/m² where floor area exceeds 10 m².
- No lateral loading permitted excepting wind loads.
- Maximum length or width not greater than 9 m.
- Maximum height as shown on page 305.
- Lateral restraint provided by direct bearing of roof and as shown on page 468.
- Maximum of two major openings in one wall of the building. Height maximum 2.1 m, width maximum 5 m (if 2 openings, total width maximum 5 m).
- Other small openings permitted, as shown on next page.
- Bonded or connected to piers of minimum size 390×190 mm at maximum 3 m centres for the full wall height as shown above. Pier connections are with pairs of wall ties of 20×3 mm flat stainless steel type at 300 mm vertical spacing.
Attached piers as applied to 1/2 brick (90 mm min.) thick walls ~

- Major openings A and B are permitted in one wall only. Aggregate width is 5 m maximum. Height not greater than 2.1 m. No other openings within 2 m.
- Other walls not containing a major opening can have smaller openings of maximum aggregate area 2.4 m².
- Maximum of only one opening between piers.
- Distance from external corner of a wall to an opening at least 390 mm unless the corner contains a pier.
- The minimum pier dimension of 390x190 mm can be varied to 327x215 mm to suit brick sizes.
Construction of half-brick and 100 mm thick solid concrete block walls (90 mm min.) with attached piers, has height limitations to maintain stability. The height of these buildings will vary depending on the roof profile; it should not exceed the lesser value in the following examples ~

Note: All dimensions are maximum.

Height is measured from top of foundation to top of wall except where shown at an intermediate position. Where the underside of the floor slab provides an effective lateral restraint, measurements may be taken from here.
The appearance of a building can be significantly influenced by the mortar finishing treatment to masonry. Finishing may be achieved by jointing or pointing.

Jointing — the finish applied to mortar joints as the work proceeds.

Pointing — the process of removing semi-set mortar to a depth of about 20mm and replacing it with fresh mortar. Pointing may contain a colouring pigment to further enhance the masonry.

Finish profiles, typical examples shown pointed —

Examples of pointing to masonry

Note: Recessed and overhung finishes should not be used in exposed situations, as rainwater can be detained. This could encourage damage by frost action and growth of lichens.
Specials – these are required for feature work and application to various bonds, as shown on the preceding pages. Bonding is not solely for aesthetic enhancement. In many applications, e.g. English bonded manhole walls, the disposition of bricks is to maximise wall strength and integrity. In a masonry wall the amount of overlap should not be less than one quarter of a brick length. Specials may be machine or hand cut from standard bricks, or they may be purchased as purpose-made. These purpose-made bricks are relatively expensive as they are individually manufactured in hardwood moulds.

Ref. BS 4729: Specification for dimensions of bricks of special shapes and sizes.
Brickwork can be repetitive and monotonous, but with a little imagination and skilled application it can be a highly decorative art form. Artistic potential is made possible by the variety of naturally occurring brick colours, textures and finishes, the latter often applied as a sanding to soft clay prior to baking. Furthermore, the range of pointing techniques, mortar colourings, brick shapes and profiles can combine to create countless possibilities for architectural expression.

Bricks are manufactured from baked clay, autoclaved sand/lime or concrete. Clay is ideally suited to hand making special shapes in hardwood moulds. Some popular formats are shown below, but there is no limit to creative possibilities.

![Diagram of brick shapes](image)

Purpose-Made Special Bricks

- plinth header
 - 215 mm long
- plinth stretcher
 - 102.5 mm wide
- plinth wide-bed
 - 158 mm long
- plinth external return
- squint angle
- angle brick
- dog-leg brick
- birdsmouth
- cant
- double cant
- single bullnose
- double bullnose
- bullnose on end (cow nose)
- bullnose mitre
- single bullnose header
- double-headed bullnose

Purpose-made and special shape bricks
Plinths — used as a projecting feature to enhance external wall appearance at its base. The exposed projection determines that only frost-proof quality bricks are suitable and that recessed or raked out joints which could retain water must be avoided.

Typical external wall base —

Corbel — a projecting feature at higher levels of a building. This may be created by using plinth bricks laid upside down with header and stretcher formats maintaining bond. For structural integrity, the amount of projection (P) must not exceed one third of the overall wall thickness (T). Some other types of corbel are shown on the next page.
Corbel — a type of inverted plinth, generally located at the higher levels of a building to create a feature. A typical example is quarter bonded headers as a detail below window openings.

Dentil Coursing — a variation on continuous corbelling where alternative headers project. This is sometimes referred to as table corbelling.

Dog Tothing — a variation on a dentil course created by setting the feature bricks at 45°.

Note: Cavity insulated as required.
Blocks ~ these are walling units exceeding in length, width or height the dimensions specified for bricks in BS 3921. Precast concrete blocks should comply with the recommendations set out in BS 6073-1 and BS EN 772-2. Blocks suitable for external solid walls are classified as loadbearing and are required to have a minimum average crushing strength of 2.8 N/mm².

Typical Details ~

Refs. BS 6073-1: Precast concrete masonry units.
BS EN 772-2: Methods of test for masonry units.
Cavity Walls ~ these consist of an outer brick or block leaf or skin separated from an inner brick or block leaf or skin by an air space called a cavity. These walls have better thermal insulation and weather resistance properties than a comparable solid brick or block wall and therefore are in general use for the enclosing walls of domestic buildings. The two leaves of a cavity wall are tied together with wall ties at not less than the spacings given in Table 5 in Approved Document A — Building Regulations (see below).

The width of the cavity should be between 50 and 75mm unless vertical twist type ties are used at not more than the centres given in Table 5 when the cavity width can be between 75 and 300mm. Cavities are not normally ventilated and should be sealed at eaves level.

Note: Stainless steel or non-ferrous ties are now preferred.
Cavity Walls

cavity leaves to be not less than 90mm thick

outer leaf of selected facing bricks

dpc

ground level

150 min.

dry vertical joints at 900% to form weep holes

bricks and blocks below ground level to be of suitable quality

mass concrete strip foundation (1:3:6) 15N/mm²

insulated cavity to extend at least 150mm below the lowest dpc

floor screed

50mm rigid insulation

damp-proof membrane

mass concrete ground floor slab

well compacted hardcore

cavity filling of weak concrete to prevent leaves of wall moving towards each other as a result of earth pressures

TRADITIONAL CONSTRUCTION

brick outer leaf and block inner leaf

dpc

ground level

150 min.

weep holes at 900%

225 or 305mm wide blocks of 150 or 225mm thickness laid flat

mass concrete strip foundation (1:3:6) 15N/mm²

insulated cavity to be unbridged except above eaves level or by wall ties unless a suitable dpc is used to prevent the passage of moisture to the inner leaf

damp-proof membrane

ground floor construction as above

blocks below ground level to be of a suitable quality

ALTERNATIVE CONSTRUCTION
Parapet ~ a low wall projecting above the level of a roof, bridge or balcony forming a guard or barrier at the edge. Parapets are exposed to the elements on three faces namely front, rear and top and will therefore need careful design and construction if they are to be durable and reliable.

Typical Details ~

Parapet Walls

![Diagram of Parapet Walls]

- **Solid Wall - High Level**
 - 40mm minimum dpc
 - Brickwork in BS 3921 special quality bricks
 - Thickness of wall as given in Diagram 4 in AD 'A'
 - Roof slab, vapour control layer, screed and covering

- **Cavity Wall - High Level**
 - Precast concrete weathered coping
 - Rigid dpc over cavity
 - Flexible non-ferrous metal flashing & dpc
 - Weep holes at 900°C/c
 - Roof slab, vapour control layer, screed and finish

- **Solid Wall - Low Level**
 - 350mm max. if above adopt high level detail
 - Roof as above

- **Cavity Wall - Low Level**
 - 350mm max. if above adopt high level detail
 - Roof as above
Historically, finned or buttressed walls have been used to provide lateral support to tall single storey masonry structures such as churches and cathedrals. Modern applications are similar in principle and include theatres, gymnasiums, warehouses, etc. Where space permits, they are an economic alternative to masonry cladding of steel or reinforced concrete framed buildings. The fin or pier is preferably brick bonded to the main wall. It may also be connected with horizontally bedded wall ties, sufficient to resist vertical shear stresses between fin and wall.

Structurally, the fins are deep piers which reinforce solid or cavity masonry walls. For design purposes the wall may be considered as a series of 'T' sections composed of a flange and a pier. If the wall is of cavity construction, the inner leaf is not considered for bending moment calculations, although it does provide stiffening to the outer leaf or flange.
Masonry diaphragm walls are an alternative means of constructing tall, single storey buildings such as warehouses, sports centres, churches, assembly halls, etc. They can also be used as retaining and boundary walls with planting potential within the voids. These voids may also be steel reinforced and concrete filled to resist the lateral stresses in high retaining walls.

A diaphragm wall is effectively a cavity wall where the two leaves of masonry are bonded together with cross ribs and not wall ties. It is stronger than a conventionally tied cavity wall and for structural purposes may be considered as a series of bonded ‘I’ sections or box sections. The voids may be useful for housing services, but any access holes in the construction must not disturb the integrity of the wall. The voids may also be filled with insulation to reduce heat energy losses from the building, and to prevent air circulatory heat losses within the voids. Where thermal insulation standards apply, this type of wall will have limitations as the cross ribs will provide a route for cold bridging. U values will increase by about 10% compared with conventional cavity wall construction of the same materials.

BS 5628-3: Code of practice for use of masonry. Materials and components, design and workmanship.
Function ~ the primary function of any damp-proof course (dpc) or damp-proof membrane (dpm) is to provide an impermeable barrier to the passage of moisture. The three basic ways in which damp-proof courses are used is to:-

1. Resist moisture penetration from below (rising damp).
2. Resist moisture penetration from above.
3. Resist moisture penetration from horizontal entry.

Typical Examples ~

SUITABLE DPC MATERIALS
- Engineering bricks - BS 3921
- Slates - BS EN 12326-1
- Lead - BS EN 12588
- Copper - BS EN 1172
- Bitumen BS 6398
- Propriety emulsions
- Polythene BS 6515
- Pitch polymers
- Mastic Asphalt BS 6925

SUITABLE DPM MATERIALS
- LDPE—1200 gauge (0.3 mm)
- Bitumen—3 coats applied cold

Refs: BS s 743 & 8102
Building Regulations, Approved Document C2, Section 5: A wall may be built with a `damp-proof course of bituminous material, engineering bricks or slates in cement mortar, or any other material that will prevent the passage of moisture.'

<table>
<thead>
<tr>
<th>Material</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead BS EN 12588 Code 4 (1.8 mm)</td>
<td>May corrode in the presence of mortar. Both surfaces to be coated with bituminous paint. Workable for application to cavity trays, etc.</td>
</tr>
<tr>
<td>Copper BS EN 1172 0.25 mm</td>
<td>Can cause staining to adjacent masonry. Resistant to corrosion.</td>
</tr>
<tr>
<td>Bitumen BS 6398 in various bases:</td>
<td>Hessian or fibre may decay with age, but this will not affect efficiency. Tearable if not protected. Lead bases are suited where there may be a high degree of movement in the wall.</td>
</tr>
<tr>
<td></td>
<td>Hessian 3.8 kg/m²</td>
</tr>
<tr>
<td></td>
<td>Fibre 3.3 ...</td>
</tr>
<tr>
<td></td>
<td>Asbestos 3.8 ...</td>
</tr>
<tr>
<td></td>
<td>Hessian & lead 4.4 ...</td>
</tr>
<tr>
<td></td>
<td>Fibre & lead 4.4 ...</td>
</tr>
<tr>
<td>LDPE BS 6515 0.46 mm (polyethylene)</td>
<td>No deterioration likely, but maybe difficult to bond, hence the profiled surface finish. Not suited under light loads. Absorbs movement well. Joints and angles made with product manufacturer’s adhesive tape.</td>
</tr>
<tr>
<td>Bitumen polymer and pitch polymer 1.10 mm</td>
<td>Preformed dpc for cavity trays, cloaks, direction changes and over lintels.</td>
</tr>
<tr>
<td>Polypropylene BS 5319 1.5 to 2.0 mm</td>
<td>Note: All the above dpcs to be lapped at least 100 mm at joints and adhesive sealed. Dpcs should be continuous with any dpm in the floor.</td>
</tr>
<tr>
<td>Material</td>
<td>Remarks</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Mastic asphalt</td>
<td>Does not deteriorate. Requires surface treatment with sand or scoring to effect a mortar key.</td>
</tr>
<tr>
<td>Engineering bricks</td>
<td>Min. 2 courses laid breaking joint in cement mortar 1:3. No deterioration, but may not blend with adjacent facings.</td>
</tr>
<tr>
<td>Slate</td>
<td>Min. 2 courses laid as above. Will not deteriorate, but brittle so may fracture if building settles.</td>
</tr>
</tbody>
</table>

Refs:
BS 743: Specification for materials for damp-proof courses.
BS 5628: Code of practice for use of masonry.
BS 5628-3: Materials and components, design and workmanship.
BS 8215: Code of practice for design and installation of damp-proof courses in masonry construction.
BRE Digest 380: Damp-proof courses.

Note: It was not until the Public Health Act of 1875, that it became mandatory to instal damp-proof courses in new buildings. Structures constructed before that time, and those since, which have suffered dpc failure due to deterioration or incorrect installation, will require remedial treatment. This could involve cutting out the mortar bed joint two brick courses above ground level in stages of about 1m in length. A new dpc can then be inserted with mortar packing, before proceeding to the next length. No two adjacent sections should be worked consecutively. This process is very time consuming and may lead to some structural settlement. Therefore, the measures explained on the following two pages are usually preferred.
Materials — Silicon solutions in organic solvent.
 Aluminium stearate solutions.
 Water soluble silicon formulations (siliconates).

Methods — High pressure injection (0.70 — 0.90 MPa) solvent based.
 Low pressure injection (0.15 — 0.30 MPa) water based.
 Gravity feed, water based.
 Insertion/injection, mortar based.

Pressure injection — 12mm diameter holes are bored to about two-thirds the depth of masonry, at approximately 150mm horizontal intervals at the appropriate depth above ground (normally 2–3 brick courses). These holes can incline slightly downwards. With high (low) pressure injection, walls in excess of 120mm (460mm) thickness should be drilled from both sides. The chemical solution is injected by pressure pump until it exudes from the masonry. Cavity walls are treated as each leaf being a solid wall.

Gravity feed — 25mm diameter holes are bored as above. Dilute chemical is transfused from containers which feed tubes inserted in the holes. This process can take from a few hours to several days to effect. An alternative application is insertion of frozen pellets placed in the bore holes. On melting, the solution disperses into the masonry to be replaced with further pellets until the wall is saturated.
Injection mortars — 19mm diameter holes are bored from both sides of a wall, at the appropriate level and no more than 230mm apart horizontally, to a depth equating to three-fifths of the wall thickness. They should be inclined downwards at an angle of 20 to 30°. The drill holes are flushed out with water, before injecting mortar from the base of the hole and outwards. This can be undertaken with a hand operated caulking gun. Special cement mortars contain styrene butadiene resin (SDR) or epoxy resin and must be mixed in accordance with the manufacturer’s guidance.

Notes relating to all applications of chemical dpcs:
* Before commencing work, old plasterwork and rendered undercoats are removed to expose the masonry. This should be to a height of at least 300mm above the last detectable (moisture meter reading) signs of rising dampness (1 metre min.).

* If the wall is only accessible from one side and both sides need treatment, a second deeper series of holes may be bored from one side, to penetrate the inaccessible side.

* On completion of work, all boreholes are made good with cement mortar. Where dilute chemicals are used for the dpc, the mortar is rammed the full length of the hole with a piece of timber dowelling.

* The chemicals are effective by bonding to, and lining the masonry pores by curing and solvent evaporation.

* The process is intended to provide an acceptable measure of control over rising dampness. A limited amount of water vapour may still rise, but this should be dispersed by evaporation in a heated building.

Refs.
BS 6576: Code of practice for installation of chemical damp-proof courses.
BRE Digest 380: Damp-proof courses.
BRE Good Repair Guide 6: Treating rising damp in houses.
In addition to damp-proof courses failing due to deterioration or damage, they may be bridged as a result of:

* Faults occurring during construction.
* Work undertaken after construction, with disregard for the damp-proof course.

Typical examples —

Solid walls
- Paving or earth stacked against wall
- Original ground level

External rendering
- Over the dpc

Bridging through re-pointing
- Screed

Cavity walls
- Surface dpm
- Poor quality concrete and screed
- Misalignment of dpc and dpm
- Poor workmanship

Mortar droppings in cavity
Thermal insulation regulations may require insulating dpcs to prevent cold bridging around window and door openings in cavity wall construction (see pages 536 and 537). By locating a vertical dpc with a bonded insulant at the cavity closure, the dpc prevents penetration of dampness from the outside, and the insulation retains the structural temperature of the internal reveal. This will reduce heat losses by maintaining the temperature above dewpoint, preventing condensation, wall staining and mould growth.

Application —

BRE Report — Thermal Insulation: avoiding risks (2nd. ed.).
Building Regulations, Approved Document B3, Section 8: Concealed spaces (cavities).
Penetrating Gases ~ Methane and Radon

Methane — methane is produced by deposited organic material decaying in the ground. It often occurs with carbon dioxide and traces of other gases to form a cocktail known as landfill gas. It has become an acute problem in recent years, as planning restrictions on ‘green-field’ sites have forced development of derelict and reclaimed ‘brown-field’ land.

The gas would normally escape to the atmosphere, but under a building it pressurizes until percolating through cracks, cavities and junctions with services. Being odourless, it is not easily detected until contacting a naked flame, then the result is devastating!

Radon ~ a naturally occurring colour/odourless gas produced by radioactive decay of radium. It originates in uranium deposits of granite subsoils as far apart as the south-west and north of England and the Grampian region of Scotland. Concentrations of radon are considerably increased if the building is constructed of granite masonry. The combination of radon gas and the tiny radioactive particles known as radon daughters are inhaled. In some people with several years’ exposure, research indicates a high correlation with cancer related illness and death.

Protection of buildings and the occupants from subterranean gases can be achieved by passive or active measures incorporated within the structure.

1. Passive protection consists of a complete airtight seal integrated within the ground floor and walls. A standard LDPE damp proof membrane of 0.3 mm thickness should be adequate if carefully sealed at joints, but thicknesses up to 1mm are preferred, combined with foil and/or wire reinforcement.

2. Active protection requires installation of a permanently running extract fan connected to a gas sump below the ground floor. It is an integral part of the building services system and will incur operating and maintenance costs throughout the building’s life.

(See next page for construction details)
Calculated Brickwork ~ for small and residential buildings up to three storeys high the sizing of load bearing brick walls can be taken from data given in Part C of Approved Document A. The alternative methods for these and other load bearing brick walls are given in BS 5628 — Code of practice for use of masonry.

The main factors governing the loadbearing capacity of brick walls and columns are:-

1. Thickness of wall.
2. Strength of bricks used.
3. Type of mortar used.
4. Slenderness ratio of wall or column.
5. Eccentricity of applied load.

Thickness of wall ~ this must always be sufficient throughout its entire body to carry the design loads and induced stresses. Other design requirements such as thermal and sound insulation properties must also be taken into account when determining the actual wall thickness to be used.

Effective Thickness ~ this is the assumed thickness of the wall or column used for the purpose of calculating its slenderness ratio — see page 328.

Typical Examples ~

\[
\begin{align*}
\text{COLUMN OR ISOLATED PIER} & \quad \text{SOLID WALL} & \quad \text{CAVITY WALL} \\
\text{effective thickness} &= t_p & \text{eff. th.} &= t & \text{eff. th.} &= \frac{2}{3}(t_1 + t_2) \\
\end{align*}
\]

\[
\begin{align*}
\text{CAVITY WALL STIFFENED BY PIER} & \\
\text{effective thickness} &= \frac{2}{3}(t_1 + \text{effective thickness } t_2) \\
\text{effective thickness of } t_2 \text{ can be ascertained by multiplying } t_2 \text{ by a stiffening coefficient obtained from BS 5628}
\end{align*}
\]
Strength of Bricks — due to the wide variation of the raw materials and methods of manufacture bricks can vary greatly in their compressive strength. The compressive strength of a particular type of brick or batch of bricks is taken as the arithmetic mean of a sample of ten bricks tested in accordance with the appropriate British Standard. A typical range for clay bricks would be from 20 to 170 MN/m2 the majority of which would be in the 20 to 90 MN/m2 band. Generally calcium silicate bricks have a lower compressive strength than clay bricks with a typical strength range of 10 to 65 MN/m2.

Strength of Mortars — mortars consist of an aggregate (sand) and a binder which is usually cement: cement plus additives to improve workability: or cement and lime. The factors controlling the strength of any particular mix are the ratio of binder to aggregate plus the water:cement ratio. The strength of any particular mix can be ascertained by taking the arithmetic mean of a series of test cubes or prisms (BS EN 196).

Wall Design Strength — the basic stress of any brickwork depends on the crushing strength of the bricks and the type of mortar used to form the wall unit. This relationship can be plotted on a graph using data given in BS 5628 as shown below:

![Graph showing the relationship between brick crushing strength and brickwork strength](image)

Note: 1 MN/m2 equates to 1 N/mm2.
Slenderness Ratio ~ this is the relationship of the effective height to the effective thickness thus:

\[
\text{Slenderness ratio} = \frac{\text{effective height}}{\text{effective thickness}} = \frac{h}{t}
\]

Effective Height ~ this is the dimension taken to calculate the slenderness ratio as opposed to the actual height.

Typical Examples – actual height = H effective height = h

Effective Thickness ~ this is the dimension taken to calculate the slenderness ratio as opposed to the actual thickness.

Typical Examples – actual thickness = T effective thickness = t

Stress Reduction ~ the permissible stress for a wall is based on the basic stress multiplied by a reduction factor related to the slenderness factor and the eccentricity of the load:

\[
\text{Stress Reduction Factor} = \frac{T}{4} \quad \text{or} \quad \frac{T}{3}
\]
Lime ~ traditional mortars are a combination of lime, sand and water. These mixes are very workable and have sufficient flexibility to accommodate a limited amount of wall movement due to settlement, expansion and contraction. The long term durability of lime mortars is poor as they can break down in the presence of atmospheric contaminants and surface growths. Nevertheless, lime is frequently specified as a supplementary binder with cement, to increase mix workability and to reduce the possibility of joint shrinkage and cracking, a characteristic of stronger cement mortars.

Cement ~ the history of cement type mortar products is extensive. Examples dating back to the Mesopotamians and the Egyptians are not unusual; one of the earliest examples from over 10,000 years ago has been found in Galilee, Israel. Modern mortars are made with Portland cement, the name attributed to a bricklayer named Joseph Aspdin. In 1824 he patented his improved hydraulic lime product as Portland cement, as it resembled Portland stone in appearance. It was not until the 1920s that Portland cement, as we now know it, was first produced commercially by mixing a slurry of clay (silica, alumina and iron-oxides) with limestone (calcium carbonate). The mix is burnt in a furnace (calcinated) and the resulting clinker crushed and bagged.

Mortar ~ mixes for masonry should have the following properties:

* Adequate strength
* Workability
* Water retention during laying
* Plasticity during application
* Adhesion or bond
* Durability
* Good appearance ~ texture and colour

Modern mortars are a combination of cement, lime and sand plus water. Liquid plasticizers exist as a substitute for lime, to improve workability and to provide some resistance to frost when used during winter.

Masonry cement ~ these proprietary cements generally contain about 75% Portland cement and about 25% of fine limestone filler with an air entraining plasticiser. Allowance must be made when specifying the mortar constituents to allow for the reduced cement content. These cements are not suitable for concrete.

Refs. BS 6463-101, 102 and 103: Quicklime, hydrated lime and natural calcium carbonate.
BS EN 197-1: Cement. Composition, specifications and conformity criteria for common cements.
Ready mixed mortar ~ this is delivered dry for storage in purpose made silos with integral mixers as an alternative to site blending and mixing. This ensures:

* Guaranteed factory quality controlled product
* Convenience
* Mix consistency between batches
* Convenient facility for satisfying variable demand
* Limited wastage
* Optimum use of site space

Mortar and cement strength ~ see also page 327. Test samples are made in prisms of $40 \times 40\,\text{mm}$ cross section, 160 mm long. At 28 days samples are broken in half to test for flexural strength. The broken pieces are subject to a compression test across the 40 mm width. An approximate comparison between mortar strength (MN/m^2 or N/mm^2), mortar designations (i to v) and proportional mix ratios is shown in the classification table below. Included is guidance on application.

Proportional mixing of mortar constituents by volume is otherwise known as a prescribed mix or simply a recipe.

Mortar classification ~

<table>
<thead>
<tr>
<th>Traditional designation</th>
<th>BS 998-2 strength</th>
<th>Proportions by volume cement/lime/sand</th>
<th>cement/sand</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>12</td>
<td>1:0.25:3</td>
<td>1:3</td>
<td>Exposed external</td>
</tr>
<tr>
<td>ii</td>
<td>6</td>
<td>1:0.5:4–4.5</td>
<td>1:3–4</td>
<td>General external</td>
</tr>
<tr>
<td>iii</td>
<td>4</td>
<td>1:1:5–6</td>
<td>1:5–6</td>
<td>Sheltered external</td>
</tr>
<tr>
<td>iv</td>
<td>2</td>
<td>1:2:8–9</td>
<td>1:7–8</td>
<td>General internal</td>
</tr>
<tr>
<td>v</td>
<td>–</td>
<td>1:3:10–12</td>
<td>1:9–10</td>
<td>Internal, grouting</td>
</tr>
</tbody>
</table>

Relevant standards:

BS 5623-3: Code of practice for use of masonry. Materials and components, design and workmanship.

BS EN 196: Methods of testing cement. Determination of strength.

PD 6678: Guide to the selection and specification of masonry mortar.
Supports Over Openings - the primary function of any support over an opening is to carry the loads above the opening and transmit them safely to the abutments, jambs or piers on both sides. A support over an opening is usually required since the opening infilling such as a door or window frame will not have sufficient strength to carry the load through its own members.

Type of Support -

for monolithic walling of materials such as concrete load is taken as a rectangle of wall above the supporting lintel

jamb or pier

end bearing 100 mm min., 150 mm min. where clear span >1.2 m

BEAM OR LINTEL

loads are transmitted around profile of arch to the abutments on both sides

voussoirs

springer

abutment

bearing

clear span

ARCH

due to bonding of brickwork area to be supported by the lintel is assumed to be an equilateral triangle

beam or lintel designed to carry loads without undue deflection

end bearing

semi-circular arch but any geometrically formed curved outline can be used

extrados

intrados

springing

springing

key brick or stone

abutment

bearing

bearing
Arch Construction ~ by the arrangement of the bricks or stones in an arch over an opening it will be self supporting once the jointing material has set and gained adequate strength. The arch must therefore be constructed over a temporary support until the arch becomes self supporting. The traditional method is to use a framed timber support called a centre. Permanent arch centres are also available for small spans and simple formats.

Typical Arch Formats ~
The profile of an arch does not lend itself to simple positioning of a damp proof course. At best, it can be located horizontally at upper extrados level. This leaves the depth of the arch and masonry below the dpc vulnerable to dampness. Proprietary galvanised or stainless steel cavity trays resolve this problem by providing:

* Continuity of dpc around the extrados.
* Arch support/centring during construction.
* Arch and wall support after construction.

Standard profiles are made to the traditional outlines shown on the previous two pages, in spans up to 2m. Other options may also be available from some manufacturers. Irregular shapes and spans can be made to order.

Note: Arches in semi-circular, segmental or parabolic form up to 2m span can be proportioned empirically. For integrity of structure it is important to ensure sufficient provision of masonry over and around any arch, see BS 5628: Code of practice for use of masonry.
The example in steel shown on the preceding page combines structural support with a damp proof course, without the need for temporary support from a centre. Where traditional centring is retained, a lightweight preformed polypropylene cavity tray/dpc can be used. These factory made plastic trays are produced in various thicknesses of 1.5 to 3 mm relative to spans up to about 2 m. Arch centres are made to match the tray profile and with care can be reused several times.

An alternative material is code 4 lead sheet*. Lead is an adaptable material but relatively heavy. Therefore, its suitability is limited to small spans particularly with non-standard profiles.

*BS EN 12588: Lead and lead alloys. Rolled lead sheet for building purposes. Lead sheet is coded numerically from 3 to 8, which closely relates to the traditional specification in lbs./sq. ft.

Ref. BS 5628-3: Code of practice for the use of masonry. Materials and components, design and workmanship.
Openings ~ these consist of a head, jambs and sill and the different methods and treatments which can be used in their formation is very wide but they are all based on the same concepts. Application limited — see pages 536 and 537.

Typical Head Details ~

EXPOSED LINTEL
- dpc to extend 150mm beyond ends of lintel
- BS 5977 precast concrete lintels
- prestressed plank lintel with 2 courses of bricks over

PRESTRESSED LINTEL
- dpc
- pressed steel outer lintel
- precast concrete lintel

BOOT LINTEL
- weep holes at 900 c/c for exposed walls and lintels over 1.350 long

COMPOSITE LINTEL
- dpc
- pressed steel lintel
- precast concrete lintel
- galvanised mild steel angle outer lintel
- mastic seal

PRESSED STEEL LINTEL

COMPOSITE LINTEL

335
Jambs ~ these may be bonded as in solid walls or unbonded as in cavity walls. The latter must have some means of preventing the ingress of moisture from the outer leaf to the inner leaf and hence the interior of the building.

Application limited — see pages 536 and 537.

Typical Jamb Details ~
Sills — the primary function of any sill is to collect the rainwater which has run down the face of the window or door and shed it clear of the wall below.

Application limited — see pages 536 and 537.

Typical Sill Details ~

TIMBER SILL 1

TIMBER SILL 2

CAST STONE SUBSILL

SLATE SILL

BS 5642 combined slate sill and window board

Galvanised metal water bar bedded in mastic

BS 5642 cast stone or concrete sill as subsill
Traditional Construction — checked rebates or recesses in masonry solid walls were often provided at openings to accommodate door and window frames. This detail was used as a means to complement frame retention and prevent weather intrusion.

Exposure Zones — checked reveal treatment is now required mainly where wind-driven rain will have most impact. This is primarily in the south west and west coast areas of the British Isles, plus some isolated inland parts that will be identified by their respective local authorities.

A window must be aesthetically acceptable in the context of building design and surrounding environment.

Windows should be selected or designed to resist wind loadings, be easy to clean and provide for safety and security. They should be sited to provide visual contact with the outside.

Habitable upper floor rooms should have a window for emergency escape. Min. opening area. 0.330 m². Min. height and width, 0.450 m. Max height of opening, 1.100 m above floor.
Windows—Conventional Types

- **SASH TOP HUNG**
 - Opening out
 - **TOP HUNG CASEMENT**
 - Usually of small size for controlled ventilation

- **SASH SIDE HUNG**
 - Opening out
 - **SIDE HUNG CASEMENT**
 - Simplest and cheapest type of opening window

- **FIXED LIGHT**
 - Usually used in conjunction with other types

- **SASH BOTTOM HUNG**
 - Opening in
 - **BOTTOM HUNG CASEMENT**
 - Use as for top hung casement

- **VERTICAL PIVOT**
 - High performance windows - dearer than casement types - can be obtained as reversible for easy cleaning

- **HORIZONTAL PIVOT**
 - Louvres hung on centre pivots

- **DOUBLE HUNG SLIDING SASH**
 - Gives good controlled ventilation without any forward or backward projection of sash

- **HORIZONTAL SLIDING SASH**
 - Good ventilation with only small projections of louvres
Timber Casement Windows

TYPICAL ELEVATIONS

TYPICAL VERTICAL SECTION OF MODIFIED BS WINDOW
The standard range of casement windows used in the UK was derived from the English Joinery Manufacturer's Association (EJMA) designs of some 50 years ago. These became adopted in BS 644: Timber windows. Specification for factory assembled windows of various types. A modified type is shown on the preceding page. Contemporary building standards require higher levels of performance in terms of thermal and sound insulation (Bldg. Regs. Pt. L and E), air permeability, water tightness and wind resistance (BS ENs 1026, 1027 and 12211, respectively). This has been achieved by adapting Scandinavian designs with double and triple glazing to attain U values as low as 1.2 W/m²K and a sound reduction of 50 dB.

Further refs:
BS 6375: Performance of windows.
BS 6375-1: Classification for weather tightness.
BS 6375-2: Operation and strength characteristics.
BS 7950: Specification for enhanced security performance.
Metal Windows ~ these can be obtained in steel (BS 6510) or in aluminium alloy (BS 4873). Steel windows are cheaper in initial cost than aluminium alloy but have higher maintenance costs over their anticipated life, both can be obtained fitted into timber subframes. Generally they give a larger glass area for any given opening size than similar timber windows but they can give rise to condensation on the metal components.

Refs.:
BS 4873: Aluminium alloy windows.
BS 6510: Steel-framed windows and glazed doors.
Timber Windows ~ wide range of ironmongery available which can be factory fitted or supplied and fixed on site.

Metal Windows ~ ironmongery usually supplied with and factory fitted to the windows.

Typical Examples ~

CASEMENT FASTENER
- malleable iron, curly tail pattern
- hot pressed aluminium, plain end pattern
- hot pressed brass

CASEMENT STAY
- **CASEMENT STAY - malleable iron, leaf pattern, half round section with two pins**
 Sizes: 200; 250 and 300 mm
- **CASEMENT STAY - cast aluminium, plain end pattern with one pin**
 Sizes: 250 and 300 mm
- **CASEMENT STAY - steel and brass, sliding screw down pattern**
 Sizes: 250 and 300 mm
- **CASEMENT STAY - steel, stayput pattern**
 Arm Sizes: 100; 140 and 175 mm

VENTLIGHT CATCH
- used with bottom hung ventilators

QUADRANT STAY
- malleable iron or brass
 Sizes: 150, 175 and 200 mm
Sliding Sash Windows ~ these are an alternative format to the conventional side hung casement windows and can be constructed as a vertical or double hung sash window or as a horizontal sliding window in timber, metal, plastic or in any combination of these materials. The performance and design functions of providing daylight, ventilation, vision out, etc., are the same as those given for traditional windows in Windows — Performance Requirements on page 339.

Typical Double Hung Weight Balanced Window Details ~

![Diagram of a sliding sash window with labels for components such as pulley head, sash weights, sash framing, glazing bar, sash cord, and draught stop. The labels are detailed in the text box.]
Double Hung Sash Windows — these vertical sliding sash windows come in two formats when constructed in timber. The weight balanced format is shown on the preceding page, the alternative spring balanced type is illustrated below. Both formats are usually designed and constructed to the recommendations set out in BS 644.

Typical Double Hung Spring Balanced Window Details ~

ELEVATION

- 114 x 33 solid stile
- 21 x 8 parting bead
- 48 x 21 head outside lining
- 48 x 41 sash framing
- upper sash
- glass
- lower sash
- spring balance
- horn
- 49 x 24 splayed and rebated meeting rails
- 41 x 22 glazing bar
- 57 x 41 bottom rail
- 135 x 60 flush sill

JAMB DETAIL

- 114 x 33 solid stile
- staff bead
- 48 x 21 jamb outside lining
- glass

VERTICAL SECTION

- 114 x 33 solid head
- 19 x 14 removable staff bead
- spiral spring balance
- 41 x 22 glazing bar
- 33 x 19 draught stop

NB. if 114 x 60 solid stiles are used spring balances can be housed within grooves in the solid stile thickness
Horizontally Sliding Sash Windows — these are an alternative format to the vertically sliding or double hung sash windows shown on pages 345 & 346 and can be constructed in timber, metal, plastic or combinations of these materials with single or double glazing. A wide range of arrangements are available with two or more sliding sashes which can have a ventlight incorporated in the outer sliding sash.

Typical Horizontally Sliding Sash Window Details —
Pivot Windows ~ like other windows these are available in timber, metal, plastic or in combinations of these materials.

They can be constructed with centre jamb pivots enabling the sash to pivot or rotate in the horizontal plane or alternatively the pivots can be fixed in the head and sill of the frame so that the sash rotates in the vertical plane.

Typical Example ~

adjustable ventilator fitted in top rail of sash

75 x 75 frame jamb

heavy duty friction hinge with safety catches to window opening to lock it when reversed for window cleaning

locking handle connected to espagnolette giving two locking points and night ventilation position

groove for 32mm thick window board

150 x 75 hardwood sill

100 x 75 frame head

65 x 65 sash framing

factory sealed double glazing unit to pivot sash

65 x 65 sash framing

weather seal to all rebates
Bay Windows ~ these can be defined as any window with side lights which projects in front of the external wall and is supported by a sill height wall. Bay windows not supported by a sill height wall are called oriel windows. They can be of any window type, constructed from any of the usual window materials and are available in three plan formats namely square, splay and circular or segmental. Timber corner posts can be boxed, solid or jointed the latter being the common method.

Typical Examples ~

TYPICAL SQUARE BAY WINDOW (665mm projection)

60° SPLAY BAY WINDOW AND 45° SPLAY BAY WINDOW

TYPICAL 6 LIGHT CIRCULAR OR SEGMENTAL BAY WINDOW
Schedules – the main function of a schedule is to collect together all the necessary information for a particular group of components such as windows, doors and drainage inspection chambers. There is no standard format for schedules but they should be easy to read, accurate and contain all the necessary information for their purpose. Schedules are usually presented in a tabulated format which can be related to and read in conjunction with the working drawings.

Typical Example –

<table>
<thead>
<tr>
<th>Location or Number</th>
<th>Type</th>
<th>Material</th>
<th>Overall Size</th>
<th>Glass</th>
<th>Ironmongery</th>
<th>Sill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 & 2</td>
<td>9 FCV4 – Subframe –</td>
<td>steel, softwood</td>
<td>910×1214, 970×1275</td>
<td>146×1140, 632×553, 670×594</td>
<td>supplied with casements</td>
<td>2 cos. plain tiles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3, 4, 5 & 6</td>
<td>240V –</td>
<td>softwood</td>
<td>1206×1206</td>
<td>480×280, 580×700, 480×1030, 3mm float</td>
<td>ditto</td>
<td>ditto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Purpose made – Drg. No. C (31)-457</td>
<td>softwood</td>
<td>1770×1600</td>
<td>460×200, 1080×300, 460×1040, 1080×1140, 3mm float</td>
<td>1–200mm al stays, 1–300mm al alloy fastener</td>
<td>sill of frame</td>
</tr>
</tbody>
</table>
Glass - this material is produced by fusing together soda, lime and silica with other minor ingredients such as magnesia and alumina. A number of glass types are available for domestic work and these include:

Clear Float - used where clear undistorted vision is required. Available thicknesses range from 3 mm to 25 mm.

Clear Sheet - suitable for all clear glass areas but because the two faces of the glass are never perfectly flat or parallel some distortion of vision usually occurs. This type of glass is gradually being superseded by the clear float glass. Available thicknesses range from 3 mm to 6 mm.

Translucent Glass - these are patterned glasses most having one patterned surface and one relatively flat surface. The amount of obscurity and diffusion obtained depend on the type and nature of pattern. Available thicknesses range from 4 mm to 6 mm for patterned glasses and from 5 mm to 10 mm for rough cast glasses.

Wired Glass - obtainable as a clear polished wired glass or as a rough cast wired glass with a nominal thickness of 7 mm. Generally used where a degree of fire resistance is required. Georgian wired glass has a 12 mm square mesh whereas the hexagonally wired glass has a 20 mm mesh.

Choice of Glass - the main factors to be considered are:
1. Resistance to wind loadings.
2. Clear vision required.
3. Privacy.
5. Fire resistance.
6. Aesthetics.

Glazing Terminology -

![Glazing Terminology Diagram]
Glazing ~ the act of fixing glass into a frame or surround in domestic work this is usually achieved by locating the glass in a rebate and securing it with putty or beading and should be carried out in accordance with the recommendations contained in BS 6262: Glazing for buildings.

Timber Surrounds ~ linseed oil putty to BS 544 — rebate to be clean, dry and primed before glazing is carried out. Putty should be protected with paint within two weeks of application.

Metal Surrounds ~ metal casement putty if metal surround is to be painted — if surround is not to be painted a non-setting compound should be used.

Typical Glazing Details ~
Double Glazing ~ as its name implies this is where two layers of glass are used instead of the traditional single layer. Double glazing can be used to reduce the rate of heat loss through windows and glazed doors or it can be employed to reduce the sound transmission through windows. In the context of thermal insulation this is achieved by having a small air or argon gas filled space within the range of 6 to 20 mm between the two layers of glass. The sealed double glazing unit will also prevent internal misting by condensation. If metal frames are used these should have a thermal break incorporated in their design. All opening sashes in a double glazing system should be fitted with adequate weather seals to reduce the rate of heat loss through the opening clearance gap.

In the context of sound insulation three factors affect the performance of double glazing. Firstly good installation to ensure airtightness, secondly the weight of glass used and thirdly the size of air space between the layers of glass. The heavier the glass used the better the sound insulation and the air space needs to be within the range of 50 to 300 mm. Absorbent lining to the reveals within the air space will also improve the sound insulation properties of the system.

Typical Examples ~

Approximate ‘U’ values
- Single glazing - 4.3 W/m²K
- Double glazing - 2.5 W/m²K
- 6 mm single glazing - 27 dB
- Double glazing as shown - 42 dB
Secondary glazing of existing windows is an acceptable method for reducing heat energy losses at wall openings. Providing the existing windows are in a good state of repair, this is a cost effective, simple method for upgrading windows to current energy efficiency standards. In addition to avoiding the disruption of removing existing windows, further advantages of secondary glazing include, retention of the original window features, reduction in sound transmission and elimination of draughts. Applications are manufactured for all types of window, with sliding or hinged variations. The following details are typical of horizontal sliding sashes -
Low emissivity or "Low E" glass is specially manufactured with a surface coating to significantly improve its thermal performance. The surface coating has a dual function:

1. Allows solar short wave light radiation to penetrate a building.
2. Reflects long wave heat radiation losses back into a building.

Manufacturing processes:

1. Pyrolitic hard coat, applied on-line as the glass is made. Emissivity range, 0.15–0.20, e.g. Pilkington ‘K’.
2. A sputtered soft coat applied after glass manufacture. Emissivity range, 0.05–0.10, e.g. Pilkington ‘Kappafloat’ and ‘Suncool High Performance’.

Note: In relative terms, uncoated glass has a normal emissivity of about 0.90.

Indicative U-values for multi-glazed windows of 4mm glass with a 16mm void width:

<table>
<thead>
<tr>
<th>Glazing type</th>
<th>uPVC or wood frame</th>
<th>metal frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double, air filled</td>
<td>2.7</td>
<td>3.3</td>
</tr>
<tr>
<td>Double, argon filled</td>
<td>2.6</td>
<td>3.2</td>
</tr>
<tr>
<td>Double, air filled Low E (0.20)</td>
<td>2.1</td>
<td>2.6</td>
</tr>
<tr>
<td>Double, argon filled Low E (0.20)</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Double, air filled Low E (0.05)</td>
<td>2.0</td>
<td>2.3</td>
</tr>
<tr>
<td>Double, argon filled Low E (0.05)</td>
<td>1.7</td>
<td>2.1</td>
</tr>
<tr>
<td>Triple, air filled</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Triple, argon filled</td>
<td>1.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Triple, air filled Low E (0.20)</td>
<td>1.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Triple, argon filled Low E (0.20)</td>
<td>1.5</td>
<td>1.9</td>
</tr>
<tr>
<td>Triple, air filled Low E (0.05)</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Triple, argon filled Low E (0.05)</td>
<td>1.3</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Notes:
1. A larger void and thicker glass will reduce the U-value, and vice-versa.
2. Data for metal frames assumes a thermal break of 4 mm (see next page).
3. Hollow metal framing units can be filled with a closed cell insulant foam to considerably reduce U-values.
Extruded aluminium profiled sections are designed and manufactured to create lightweight hollow window (and door) framing members.

Finish — untreated aluminium is prone to surface oxidisation. This can be controlled by paint application, but most manufacturers provide a variable colour range of polyester coatings finished gloss, satin or matt.

Thermal insulation — poor insulation and high conductivity are characteristics of solid profile metal windows. This is much less apparent with hollow profile outer members, as they can be considerably enhanced by a thermal infilling of closed cell foam.

Condensation — a high strength 2-part polyurethane resin thermal break between internal and external profiles inhibits cold bridging. This reduces the opportunity for condensation to form on the surface. The indicative U-values given on the preceding page are based on a thermal break of 4 mm. If this is increased to 16 mm, the values can be reduced by up to 0.2 W/m² K.
In these critical locations, glazing must satisfy one of the following:

1. Breakage to leave only a small opening with small detachable particles without sharp edges.

2. Disintegrating glass must leave only small detached pieces.

3. Inherent robustness, e.g. polycarbonate composition. Annealed glass acceptable but with the following limitations:

<table>
<thead>
<tr>
<th>Thickness of annealed glass (mm)</th>
<th>Max. glazed area.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Height (m) Width (m)</td>
</tr>
<tr>
<td>8</td>
<td>1.100 1.100</td>
</tr>
<tr>
<td>10</td>
<td>2.250 2.250</td>
</tr>
<tr>
<td>12</td>
<td>3.000 4.500</td>
</tr>
<tr>
<td>15</td>
<td>no limit</td>
</tr>
</tbody>
</table>

4. Panes in small areas, <250mm wide and <0.5m² area. e.g. leaded lights (4mm annealed glass) and Georgian pattern (6mm annealed glass).

5. Protective screening as shown:
Manifestation or Marking of Glass — another aspect of the critical location concept which frequently occurs with contemporary glazed features in a building. Commercial premises such as open plan offices, shops and showrooms often incorporate large walled areas of uninterrupted glass to promote visual depth, whilst dividing space or forming part of the exterior envelope. To prevent collision, glazed doors and walls must have prominent framing or intermediate transoms and mullions. An alternative is to position obvious markings at 1000 and 1500 mm above floor level. Glass doors could have large pull/push handles and/or IN and OUT signs in bold lettering. Other areas may be adorned with company logos, stripes, geometric shape, etc.

Critical Locations — The Building Regulations, Approved Document N, determines positions where potential personal impact and injury with glazed doors and windows are most critical. In these situations the glazing specification must incorporate a degree of safety such that any breakage would be relatively harmless. Additional measures in British Standard 6206 complement the Building Regulations and provide test requirements and specifications for impact performance for different classes of glazing material. See also BS 6262.

Glass blocks have been used for some time as internal feature partitioning. They now include a variety of applications in external walls, where they combine the benefits of a walling unit with a natural source of light. They have also been used in paving to allow natural light penetration into basements.

Laying — glass blocks can be bonded like conventional brickwork, but for aesthetic reasons are usually laid with continuous vertical and horizontal joints.

Jointing — blocks are bedded in mortar with reinforcement from two, 9 gauge galvanised steel wires in horizontal joints. Every 3rd. course for 150 mm units, every 2nd. course for 200 mm units and every course for 300 mm units. First and last course to be reinforced.

Fire resistance, BS 476-22 - 1 hour integrity.
Maximum panel size is 9m². Maximum panel dimension is 3 m

Typical 'U' values: 100 mm block = 2.9 W/m²K
80 mm block = 3.24 W/m²K
Mortar — dryer than for bricklaying as the blocks are non-absorbent. The general specification will include: White Portland Cement (BS EN 197-1), High Calcium Lime (BS EN 459-1) and Sand. The sand should be white quartzite or silica type. Fine silver sand is acceptable. An integral waterproofing agent should also be provided. Recommended mix ratios — 1 part cement: 0.5 part lime: 4 parts sand.

Ref. BS EN 1051-1: Glass in building — glass blocks and glass pavers. Definitions and description.
Doors ~ can be classed as external or internal. External doors are usually thicker and more robust in design than internal doors since they have more functions to fulfil.

Typical Functions ~
External Doors — these are available in a wide variety of types and styles in timber, aluminium alloy or steel. The majority of external doors are however made from timber, the metal doors being mainly confined to fully glazed doors such as 'patio doors'.

Typical Examples of External Doors —

LEDGED AND BRACED DOOR

FRAMED LEDGED AND BRACED DOOR

1, 2, 3 OR 4 PANELLED DOORS

FLUSH DOORS
Typical examples of purpose made and non-standard external doors ~

Door Types

Purpose Made
- Glass panes
- Glazing bar
- Frieze rail
- Lock rail
- Stile
- Bottom rail

Tudor Style
- Muntin
- Bullseye pane
- Flat solid panels
- Intermediate rail
- Stile
- Bottom rail

Georgian Style
- Solid bevelled and raised panels
- Top rail
- Frieze rail
- Stile
- Lock rail
- Muntin
- Bottom rail

Purpose Made
- Top rail
- Stile
- Radial glazing bars
- Frieze rail
- Solid raised panels
- Intermediate rail
- Bottom rail
Door Frames — these are available for all standard external doors and can be obtained with a fixed solid or glazed panel above a door height transom. Door frames are available for doors opening inwards or outwards. Most door frames are made to the recommendations set out in BS 4787: Internal and external wood doorsets, door leaves and frames. Specification for dimensional requirements.

Typical Example —

![Diagram of a door frame with dimensions and construction details.](image)
Door Ironmongery ~ available in a wide variety of materials, styles and finisher’s but will consist of essentially the same components:-

Hinges or Butts — these are used to fix the door to its frame or lining and to enable it to pivot about its hanging edge.

Locks, Latches and Bolts — the means of keeping the door in its closed position and providing the required degree of security. The handles and cover plates used in conjunction with locks and latches are collectively called door furniture.

Letter Plates — fitted in external doors to enable letters etc., to be deposited through the door.

Other items include Finger and Kicking Plates which are used to protect the door fabric where there is high usage.

Draught Excluders to seal the clearance gap around the edges of the door and Security Chains to enable the door to be partially opened and thus retain some security.

Typical Examples ~
Industrial Doors ~ these doors are usually classified by their method of operation and construction. There is a very wide range of doors available and the choice should be based on the following considerations:

1. Movement - vertical or horizontal.
2. Size of opening.
3. Position and purpose of door(s).
4. Frequency of opening and closing door(s).
5. Manual or mechanical operation.
6. Thermal and/or sound insulation requirements.
7. Fire resistance requirements.

Typical Industrial Door Types ~

1. **Straight Sliding** -

 ![Diagram of straight sliding doors]

 SINGLE LEAF DOUBLE LEAF MULTI LEAF

 These types can be top hung with a bottom guide roller or hung with bottom rollers and top guides - see page 367

2. **Sliding / Folding** -

 ![Diagram of sliding/folding doors]

 MULTI LEAF END FOLDING HUNG BETWEEN REVEALS

 MULTI LEAF END FOLDING HUNG BEHIND OPENING

 These types can be top hung with a bottom guide roller or hung with bottom rollers and top guides - see page 368

3. **Shutters** -

 ![Diagram of shutters]

 HORIZONTAL FOLDING SHUTTER ROLLER SHUTTER

 Shutters can be installed between, behind or in front of the reveals - see page 369
Straight Sliding Doors ~ these doors are easy to operate, economic to maintain and present no problems for the inclusion of a wicket gate. They do however take up wall space to enable the leaves to be parked in the open position. The floor guide channel associated with top hung doors can become blocked with dirt causing a malfunction of the sliding movement whereas the rollers in bottom track doors can seize up unless regularly lubricated and kept clean. Straight sliding doors are available with either manual or mechanical operation.

Typical Example ~
Sliding/Folding Doors ~ these doors are an alternative format to the straight sliding door types and have the same advantages and disadvantages except that the parking space required for the opened door is less than that for straight sliding doors. Sliding/folding are usually manually operated and can be arranged in groups of 2 to 8 leaves.

Typical Example ~
Shutters ~ horizontal folding shutters are similar in operation to sliding/folding doors but are composed of smaller leaves and present the same problems. Roller shutters however do not occupy any wall space but usually have to be fully opened for access. They can be manually operated by means of a pole when the shutters are self coiling, operated by means of an endless chain winding gear or mechanically raised and lowered by an electric motor but in all cases they are slow to open and close. Vision panels cannot be incorporated in the roller shutter but it is possible to include a small wicket gate or door in the design.

Typical Details ~

ELEVATION OF ROLLER

ELEVATION OF SHUTTER

PLAN ABOVE ROLLER

PLAN BELOW ROLLER

TYPICAL SECTION
Crosswall Construction ~ this is a form of construction where load bearing walls are placed at right angles to the lateral axis of the building, the front and rear walls being essentially non-load bearing cladding. Crosswall construction is suitable for buildings up to 5 storeys high where the floors are similar and where internal separating or party walls are required such as in blocks of flats or maisonettes. The intermediate floors span longitudinally between the crosswalls providing the necessary lateral restraint and if both walls and floors are of cast insitu reinforced concrete the series of 'boxes' so formed is sometimes called box frame construction. Great care must be taken in both design and construction to ensure that the junctions between the non-load bearing claddings and the crosswalls are weathertight. If a pitched roof is to be employed with the ridge parallel to the lateral axis an edge beam will be required to provide a seating for the trussed or common rafters and to transmit the roof loads to the crosswalls.

Typical Crosswall Arrangement Details ~
Advantages of Crosswall Construction:

1. Load bearing and non-load bearing components can be standardised and in same cases prefabricated giving faster construction times.
2. Fenestration between crosswalls unrestricted structurally.
3. Crosswalls although load bearing need not be weather resistant as is the case with external walls.

Disadvantages of Crosswall Construction:

1. Limitations of possible plans.
2. Need for adequate lateral ties between crosswalls.
3. Need to weather adequately projecting crosswalls.

Floors:

An insitu solid reinforced concrete floor will provide the greatest rigidity, all other form must be adequately tied to walls.
Framing ~ an industry based pre-fabricated house manufacturing process permitting rapid site construction, with considerably fewer site operatives than traditional construction. This technique has a long history of conventional practice in Scandinavia and North America, but has only gained credibility in the UK since the 1960s. Factory-made panels are based on a stud framework of timber, normally ex. 100 × 50 mm, an outer sheathing of plywood, particle-board or similar sheet material, insulation between the framing members and an internal lining of plasterboard. An outer cladding of brickwork weatherproofs the building and provides a traditional appearance.

Assembly techniques are derived from two systems:-

1. Balloon frame
2. Platform frame

A balloon frame consists of two-storey height panels with an intermediate floor suspended from the framework. In the UK, the platform frame is preferred with intermediate floor support directly on the lower panel. It is also easier to transport, easier to handle on site and has fewer shrinkage and movement problems.
Typical Details —

Notes:

1. Cavity barriers prevent fire spread. The principal locations are between elements and compartments of construction (see B. Regs. A.D. B3).

2. Thermal bridging through solid framing may be reduced by using rigid EPS insulation and lighter ‘I’ section members of plywood or OSB.
Framing — comprising inner leaf wall panels of standard cold-formed galvanised steel channel sections as structural support, with a lined inner face of vapour check layer under plasterboard. These panels can be site assembled, but it is more realistic to order them factory made. Panels are usually produced in 600 mm wide modules and bolted together on site. Roof trusses are made up from steel channel or sigma sections. See page 409 for examples of standard steel sections and BS EN 10162: Cold rolled steel sections.

Standard channel and panel.

Background/history — the concept of steel framing for house construction evolved in the early 1920s, but development of the lightweight concrete “breeze” block soon took preference. Due to a shortage of traditional building materials, a resurgence of interest occurred again during the early post-war building boom of the late 1940s. Thereafter, steel became relatively costly and uncompetitive as a viable alternative to concrete block or timber frame construction techniques. Since the 1990s more efficient factory production processes, use of semi-skilled site labour and availability of economic cold-formed sections have revived an interest in this alternative means of house construction.
Typical details ~

Advantages ~
- Factory made, therefore produced to quality controlled standards and tolerances.
- Relatively simple to assemble on site — bolted connections in pre-formed holes.
- Dimensionally stable, consistent composition, insignificant movement.
- Unaffected by moisture, therefore will not rot.
- Does not burn.
- Inedible by insects.
- Roof spans potentially long relative to weight.

Disadvantages ~
- Possibility of corrosion if galvanised protective layer is damaged.
- Deforms at high temperature, therefore unpredictable in fire.
- Electricity conductor — must be earthed.

Steel Frame Construction (2)

375
Simply Supported Slabs — these are slabs which rest on a bearing and for design purposes are not considered to be fixed to the support and are therefore, in theory, free to lift. In practice however they are restrained from unacceptable lifting by their own self weight plus any loadings.

Concrete Slabs — concrete is a material which is strong in compression and weak in tension and if the member is overloaded its tensile resistance may be exceeded leading to structural failure.

Simply Supported RC Slabs

Condition Before Loading

- Simply supported end bearing
- Plain concrete slab
- Support or bearing
- Clear span

Neutral Axis

- Neutral axis length remains unaltered therefore no stress is induced
- Upper fibres shorten and are therefore in a state of compression
- Lower fibres lengthen and are therefore in a state of tension

Load

- If tensile resistance of the slab is exceeded cracks caused by the parting of the fibres will occur — if this is likely to arise steel reinforcement should be placed in the slab

Deflection

- Maximum allowed: $1/240$ span during construction
- $1/360$ span after completion
Reinforcement ~ generally in the form of steel bars which are used to provide the tensile strength which plain concrete lacks. The number, diameter, spacing, shape and type of bars to be used have to be designed; a basic guide is shown on pages 381 and 382. Reinforcement is placed as near to the outside fibres as practicable; a cover of concrete over the reinforcement is required to protect the steel bars from corrosion and to provide a degree of fire resistance. Slabs which are square in plan are considered to be spanning in two directions and therefore main reinforcing bars are used both ways whereas slabs which are rectangular in plan are considered to span across the shortest distance and main bars are used in this direction only with smaller diameter distribution bars placed at right angles forming a mat or grid.

Typical Details ~

- Simply Supported RC Slab
 - Main bars in both directions
 - 15mm minimum cover of concrete over main reinforcement
 - Span equal in both directions
 - Square slab
 - Distribution bars
 - Main bars
 - 15mm minimum cover of concrete over main reinforcement
 - Shortest span
 - Rectangular slab
Construction ~ whatever method of construction is used the construction sequence will follow the same pattern:

1. Assemble and erect formwork.
2. Prepare and place reinforcement.
3. Pour and compact or vibrate concrete.
4. Strike and remove formwork in stages as curing proceeds.

Typical Example ~
Profiled galvanised steel decking is a permanent formwork system for construction of composite floor slabs. The steel sheet has surface indentations and deformities to effect a bond with the concrete topping. The concrete will still require reinforcing with steel rods or mesh, even though the metal section will contribute considerably to the tensile strength of the finished slab.

Typical detail -

Where structural support framing is located at the ends of a section and at intermediate points, studs are through-deck welded to provide resistance to shear -

There are considerable savings in concrete volume compared with standard insitu reinforced concrete floor slabs. This reduction in concrete also reduces structural load on foundations.
Beams ~ these are horizontal load bearing members which are classified as either main beams which transmit floor and secondary beam loads to the columns or secondary beams which transmit floor loads to the main beams.

Concrete being a material which has little tensile strength needs to be reinforced to resist the induced tensile stresses which can be in the form of ordinary tension or diagonal tension (shear). The calculation of the area, diameter, type, position and number of reinforcing bars required is one of the functions of a structural engineer.

Typical RC Beam Details ~
Mild Steel Reinforcement — located in areas where tension occurs in a beam or slab. Concrete specification is normally 25 or 30 N/mm² in this situation.

Simple beam or slab

Continuous beam or slab

Note: Distribution or cross bars function as lateral reinforcement and supplement the unit’s strength in tensile areas. They also provide resistance to cracking in the concrete as the unit contracts during setting and drying.

Pitch of main bars ≤ 3 × effective depth.

Pitch of distribution bars ≤ 5 × effective depth.
Guidance — simply supported slabs are capable of the following loading relative to their thickness:

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Self weight (kg/m²)</th>
<th>Imposed load* (kg/m²)</th>
<th>Total load (kg/m²)</th>
<th>Total load (kN/m²)</th>
<th>Span (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>240</td>
<td>500</td>
<td>740</td>
<td>7.26</td>
<td>2.4</td>
</tr>
<tr>
<td>125</td>
<td>300</td>
<td>500</td>
<td>800</td>
<td>7.85</td>
<td>3.0</td>
</tr>
<tr>
<td>150</td>
<td>360</td>
<td>500</td>
<td>860</td>
<td>8.44</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Note: As a rule of thumb, it is easy to remember that for general use (as above), thickness of slab equates to 1/24 span.

* Imposed loading varies with application from 1.5 kN/m² (153 kg/m²) for domestic buildings, to over 10 kN/m² (1020 kg/m²) for heavy industrial storage areas. 500 kg/m² is typical for office filing and storage space. See BS 6399–1: Code of practice for dead and imposed loads.

For larger spans — thickness can be increased proportionally to the span, eg. 6 m span will require a 250 mm thickness.

For greater loading — slab thickness is increased proportionally to the square root of the load, eg. for a total load of 1500 kg/m² over a 3 m span:

\[\sqrt{\frac{1500}{800}} \times 125 = 171.2 \text{ i.e. } 175 \text{ mm} \]

Continuous beams and slabs have several supports, therefore they are stronger than simple beams and slabs. The spans given in the above table may be increased by 20% for interior spans and 10% for end spans.
Bond Between Concrete and Steel — permissible stress for the bond between concrete and steel can be taken as one tenth of the compressive concrete stress, plus 0.175 N/mm2. Given the stresses in concrete and steel, it is possible to calculate sufficient grip length.

e.g. concrete working stress of 5 N/mm2
- steel working stress of 125 N/mm2
 - sectional area of reinf. bar = $3.142 \times r^2$ or $0.7854 \times d^2$
 - tensile strength of bar = $125 \times 0.7854 \times d^2$
 - circumference of bar = $3.142 \times d$
 - area of bar in contact = $3.142 \times d \times L$

Key:
- $r =$ radius of steel bar
- $d =$ diameter of steel bar
- $L =$ Length of bar in contact

* Conc. bond stress = $(0.10 \times 5 \text{ N/mm}^2) + 0.175 = 0.675 \text{ N/mm}^2$

Total bond stress = $3.142 \times L \times 0.675 \text{ N/mm}^2$

Thus, developing the tensile strength of the bar:

$$125 \times 0.7854 \times d^2 = 3.142 \times d \times L \times 0.675$$

$$98.175 \times d = 2.120 \times L$$

$$L = 46 \times d$$

As a guide to good practice, a margin of 14 d should be added to L. Therefore the bar bond or grip length in this example is equivalent to 60 times the bar diameter.
Columns ~ these are the vertical load bearing members of the structural frame which transmits the beam loads down to the foundations. They are usually constructed in storey heights and therefore the reinforcement must be lapped to provide structural continuity.
With the exception of where bars are spliced

BEAMS
The distance between any two parallel bars in the horizontal should be not less than the greater of:
* 25 mm
* the bar diameter where they are equal
* the diameter of the larger bar if they are unequal
* 6 mm greater than the largest size of aggregate in the concrete
The distance between successive layers of bars should be not less than the greater of:
* 15 mm (25 mm if bars > 25 mm dia.)
* the maximum aggregate size
An exception is where the bars transverse each other, e.g. mesh reinforcement.

COLUMNS
Established design guides allow for reinforcement of between 0.8% and 8% of column gross cross sectional area. A lesser figure of 0.6% may be acceptable. A relatively high percentage of steel may save on concrete volume, but consideration must be given to the practicalities of placing and compacting wet concrete. If the design justifies a large proportion of steel, it may be preferable to consider using a concrete clad rolled steel I section.

Transverse reinforcement — otherwise known as binders or links. These have the purpose of retaining the main longitudinal reinforcement during construction and restraining each reinforcing bar against buckling. Diameter, take the greater of:
* 6 mm
* 0.25 x main longitudinal reinforcement
Spacing or pitch, not more than the lesser of:
* least lateral column dimension
* 12 × diameter of smallest longitudinal reinforcement
* 300 mm
Helical binding — normally, spacing or pitch as above, unless the binding has the additional function of restraining the concrete core from lateral expansion, thereby increasing its load carrying potential. This increased load must be allowed for with a pitch:
* not greater than 75 mm
* not greater than 0.166 × core diameter of the column
* not less than 25 mm
* not less than 3 × diameter of the binding steel

Note: Core diameter is measured across the area of concrete enclosed within the centre line of the binding.
Typical RC Column Details ~
Steel Reinforced Concrete — a modular ratio represents the amount of load that a square unit of steel can safely transmit relative to that of concrete. A figure of 18 is normal, with some variation depending on materials specification and quality.

\[\frac{\text{Area of concrete}}{\text{Equivalent area of steel}} = \frac{\text{18}}{\text{C2}} \]
\[\text{concrete } 25 \text{ N/mm}^2 \text{ ultimate stress, area} = (300 \times 300) - (1257) = 88,743 \text{ mm}^2 \]

Area of concrete = 88,743 mm2
Equivalent area of steel = 18 × 1257 mm2 = 22626 mm2
Equivalent combined area of concrete and steel:
\[\frac{88743}{111369} \text{ mm}^2 \]

Using concrete with a safe or working stress of 5 N/mm2, derived from a factor of safety of 5, i.e.

Factor of safety = \(\frac{\text{Ultimate stress}}{\text{Working stress}} = \frac{25 \text{ N/mm}^2}{5 \text{ N/mm}^2} = 5 \text{ N/mm}^2 \)

5 N/mm2 × 111369 mm2 = 556845 Newtons
kg × 9.81 (gravity) = Newtons
Therefore: \(\frac{556845}{9.81} = 56763 \text{ kg or 56.76 tonnes permissible load} \)

Note: This is the safe load calculation for a reinforced concrete column where the load is axial and bending is minimal or nonexistent, due to a very low slenderness ratio (effective length to least lateral dimension). In reality this is unusual and the next example shows how factors for buckling can be incorporated into the calculation.
Buckling or Bending Effect — the previous example assumed total rigidity and made no allowance for column length and attachments such as floor beams.

The working stress unit for concrete may be taken as 0.8 times the maximum working stress of concrete where the effective length of column (see page 421) is less than 15 times its least lateral dimension. Where this exceeds 15, a further factor for buckling can be obtained from the following:

<table>
<thead>
<tr>
<th>Effective length ÷ Least lateral dimension</th>
<th>Buckling factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1.0</td>
</tr>
<tr>
<td>18</td>
<td>0.9</td>
</tr>
<tr>
<td>21</td>
<td>0.8</td>
</tr>
<tr>
<td>24</td>
<td>0.7</td>
</tr>
<tr>
<td>27</td>
<td>0.6</td>
</tr>
<tr>
<td>30</td>
<td>0.5</td>
</tr>
<tr>
<td>33</td>
<td>0.4</td>
</tr>
<tr>
<td>36</td>
<td>0.3</td>
</tr>
<tr>
<td>39</td>
<td>0.2</td>
</tr>
<tr>
<td>42</td>
<td>0.1</td>
</tr>
<tr>
<td>45</td>
<td>0</td>
</tr>
</tbody>
</table>

Using the example from the previous page, with a column effective length of 9 metres and a modular ratio of 18:

Effective length ÷ Least lateral dimension = 9000 ÷ 300 = 30

From above table the buckling factor = 0.5

Concrete working stress = 5N/mm2

Equivalent combined area of concrete and steel = 111369 mm2

Therefore: $5 \times 0.8 \times 0.5 \times 111369 = 222738$ Newtons

$$\frac{222738}{9.81} = 22705 \text{ kg or } 22.7 \text{ tonnes permissible load}$$
Bar Coding – a convenient method for specifying and coordinating the prefabrication of steel reinforcement in the assembly area. It is also useful on site for checking deliveries and locating materials relative to project requirements. BS EN ISO 3766 provides guidance for a simplified coding system, such that bars can be manufactured and labelled without ambiguity for easy recognition and application on site.

A typical example is the beam shown on page 380, where the lower longitudinal reinforcement (mk.1) could be coded:

\[2T20-1-200B \]

- 2 = number of bars
- T = deformed high yield steel (460 N/mm\(^2\), 8–40 mm dia.)
- 20 or Ø20 = diameter of bar (mm)
- 1 or 1 = bar mark or ref. no.
- 200 = spacing (mm)
- B = located in bottom of member
- 21 = shape code

Other common notation:

- R = plain round mild steel (250 N/mm\(^2\), 8–16 mm dia.)
- S = stainless steel
- W = wire reinforcement (4–12 mm dia.)
- T (at the end) = located in top of member
- abr = alternate bars reversed (useful for offsets)

Thus, bar mk.2 = \[2R10-2-200T \]
and mk.3 = \[10R8-3-270 \]

All but the most obscure reinforcement shapes are illustrated in the British Standard. For the beam referred to on page 380, the standard listing is:

<table>
<thead>
<tr>
<th>BS code</th>
<th>Shape</th>
<th>Total bar length on centre line (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>21</td>
<td>B</td>
<td>A + B + C - r - 2d (d = \text{bar diameter})</td>
</tr>
<tr>
<td>54</td>
<td>B</td>
<td>2(A + B) + 12d</td>
</tr>
</tbody>
</table>

Bar Schedule ~ this can be derived from the coding explained on the previous page. Assuming 10 No. beams are required:-

<table>
<thead>
<tr>
<th>Member</th>
<th>Bar mark</th>
<th>Type and size</th>
<th>No. of members</th>
<th>No. of bars in each</th>
<th>Total No.</th>
<th>Bar length (mm)</th>
<th>Shape code</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam</td>
<td>1</td>
<td>T20</td>
<td>10</td>
<td>2</td>
<td>20</td>
<td>3080</td>
<td>21</td>
<td>200</td>
<td>2700</td>
<td>2700</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>R10</td>
<td>10</td>
<td>2</td>
<td>20</td>
<td>2700</td>
<td>00</td>
<td>000</td>
<td>2700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>R8</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>1336</td>
<td>54</td>
<td>400</td>
<td>220</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 9 is used for special or non-standard shapes

Identification of Concrete Reinforcement

389
Material ~ Mild steel or high yield steel. Both contain about 99% iron, the remaining constituents are manganese, carbon, sulphur and phosphorous. The proportion of carbon determines the quality and grade of steel: mild steel has 0.25% carbon, high yield steel 0.40%. High yield steel may also be produced by cold working or deforming mild steel until it is strain hardened. Mild steel has the letter R preceding the bar diameter in mm, e.g. R20, and high yield steel the letter T or Y.

Standard bar diameters ~ 6, 8, 10, 12, 16, 20, 25, 32 and 40 mm.

Grade notation ~
- Mild steel — grade 250 or 250 N/mm2 characteristic tensile strength, (0.25% carbon, 0.06% sulphur and 0.06% phosphorous).
- High yield steel — grade 460/425, (0.40% carbon, 0.05% sulphur and 0.05% phosphorous).

460 N/mm2 characteristic tensile strength: 6, 8, 10, 12 and 16 mm diameter.
425 N/mm2 characteristic tensile strength: 20, 25, 32 and 40 mm diameter.

Examples of steel reinforcement ~

Ref. BS 4449: Specification for carbon steel bars for the reinforcement of concrete.
Steel reinforcement mesh or fabric is produced in four different formats for different applications:

<table>
<thead>
<tr>
<th>Format</th>
<th>Type</th>
<th>Typical application</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Square mesh</td>
<td>Floor slabs</td>
</tr>
<tr>
<td>B</td>
<td>Rectangular mesh</td>
<td>Floor slabs</td>
</tr>
<tr>
<td>C</td>
<td>Long mesh</td>
<td>Roads and pavements</td>
</tr>
<tr>
<td>D</td>
<td>Wrapping mesh</td>
<td>Binding wire with concrete fire protection to structural steelwork</td>
</tr>
</tbody>
</table>

Standard sheet size ~ 4.8 m long × 2.4 m wide.
Standard roll size ~ 48 and 72 m long × 2.4 m wide.

Specification ~ format letter plus a reference number. This number equates to the cross sectional area in mm2 of the main bars per metre width of mesh.

E.g. B385 is rectangular mesh with 7 mm dia. main bars, i.e. 10 bars of 7 mm dia. @ 100 mm spacing = 385 mm2.

Refs. BS 4483: Steel fabric for the reinforcement of concrete.
BS 4482: Specification for cold reduced steel wire for the reinforcement of concrete.
Cover to reinforcement in columns, beams, foundations, etc. is required for the following reasons:

- To protect the steel against corrosion.
- To provide sufficient bond or adhesion between steel and concrete.
- To ensure sufficient protection of the steel in a fire (see note).

If the cover is insufficient, concrete will spall away from the steel.

Minimum cover ~ never less than the maximum size of aggregate in the concrete, or the largest reinforcement bar size (take greater value).

Guidance on minimum cover for particular locations:

Below ground ~
- Foundations, retaining walls, basements, etc., 40 mm, binders 25 mm.
- Marine structures, 65 mm, binders 50 mm.
- Uneven earth and fill 75 mm, blinding 40 mm.

Above ground ~
- Ends of reinforcing bars, not less than 25 mm nor less than 2 × bar diameter.
- Column longitudinal reinforcement 40 mm, binders 20 mm.
- Columns < 190 mm min. dimension with bars < 12 mm dia., 25 mm.
- Beams 25 mm, binders 20 mm.
- Slabs 20 mm (15 mm where max. aggregate size is < 15 mm).

Note: Minimum cover for corrosion protection and bond may not be sufficient for fire protection and severe exposure situations. For details of fire protection see ~ Building Regulations, Approved Document B: Fire safety.

For general applications, including exposure situations, see ~
Basic Formwork — concrete when first mixed is a fluid and therefore to form any concrete member the wet concrete must be placed in a suitable mould to retain its shape, size and position as it sets. It is possible with some forms of concrete foundations to use the sides of the excavation as the mould but in most cases when casting concrete members a mould will have to be constructed on site. These moulds are usually called formwork. It is important to appreciate that the actual formwork is the reverse shape of the concrete member which is to be cast.

Basic Principles —

- Formwork sides can be designed to offer all the necessary resistance to the imposed pressures as a single member or alternatively they can be designed to use a thinner material which is adequately strutted — for economic reasons the latter method is usually employed.
- Grout tight joints.
- Formwork soffits can be designed to offer all the necessary resistance to the imposed loads as a single member or alternatively they can be designed to a thinner material which is adequately propped — for economic reasons the latter method is usually employed.
- Wet concrete — density is greater than that of the resultant set and dry concrete.
- Formwork sides — limits width and shape of wet concrete and has to resist the hydrostatic pressure of the wet concrete which will diminish to zero within a matter of hours depending on setting and curing rate.
- Formwork base or soffit — limits depth and shape of wet concrete and has to resist the initial dead load of the wet concrete and later the dead load of the dry set concrete until it has gained sufficient strength to support its own dead weight which is usually several days after casting depending on curing rate.
Typical Simple Beam Formwork Details ~

Basic Formwork—Details

SINGLE PROP SUPPORT

Erecting Formwork
1. Props positioned and levelled through.
2. Soffit placed, levelled and position checked.
3. Side forms placed, their position checked before being fixed.
4. Strutting position and fixed.
5. Final check before casting.

Suitable Formwork Materials—timber, steel and special plastics.

DOUBLE PROP SUPPORT

Striking or Removing Formwork
1. Side forms as soon as practicable usually within hours of casting this allows drying air movements to take place around the setting concrete.
2. Soffit formwork as soon as practicable usually within days but as a precaution some props are left in position until concrete member is self supporting.
Beam Formwork ~ this is basically a three sided box supported and propped in the correct position and to the desired level. The beam formwork sides have to retain the wet concrete in the required shape and be able to withstand the initial hydrostatic pressure of the wet concrete whereas the formwork soffit apart from retaining the concrete has to support the initial load of the wet concrete and finally the set concrete until it has gained sufficient strength to be self supporting. It is essential that all joints in the formwork are constructed to prevent the escape of grout which could result in honeycombing and/or feather edging in the cast beam. The removal time for the formwork will vary with air temperature, humidity and consequent curing rate.

Typical Details ~

Typical Formwork Striking Times ~

Beam Sides — 9 to 12 hours
Beam Soffits — 8 to 14 days (props left under)
Beam Props — 15 to 21 days

using OPC-air temp
7 to 16°C
Column Formwork ~ this consists of a vertical mould of the desired shape and size which has to retain the wet concrete and resist the initial hydrostatic pressure caused by the wet concrete. To keep the thickness of the formwork material to a minimum, horizontal clamps or yokes are used at equal centres for batch filling and at varying centres for complete filling in one pour. The head of the column formwork can be used to support the incoming beam formwork which gives good top lateral restraint but results in complex formwork. Alternatively, the column can be cast to the underside of the beams and at a later stage, a collar of formwork can be clamped around the cast column to complete casting and support the incoming beam formwork. Column forms are located at the bottom around a 75 to 100 mm high concrete plinth or kicker which has the dual function of location and preventing grout loss from the bottom of the column formwork.

Typical Details ~

21mm thick plywood column formwork sides

75 x 32 margin pieces forming support for incoming beam formwork

100 x 32 cleats at 600 c/c

100 x 50 soldiers or studs

noggins as required

clamms or yokes at spacings to suit anticipated pressures — for details see next page

lift out access piece to enable formwork to be cleaned out prior to casting

Typical Striking Times
9 to 12 hours using OPC — air temperature 7 to 16°C

ALTERNATIVE SIDE FORMWORK CONSTRUCTION
Column Yokes ~ these are obtainable as a metal yoke or clamp or they can be purpose made from timber.

Typical Examples ~

Shaped Columns ~ the basic principles of rectangular or square columns is followed but purpose made shaped yokes are sometimes required. Rebated columns can be formed with blocks or boxing thus —
Precast Concrete Frames — these frames are suitable for single storey and low rise applications, the former usually in the form of portal frames which are normally studied separately. Precast concrete frames provide the skeleton for the building and can be clad externally and finished internally by all the traditional methods. The frames are usually produced as part of a manufacturer's standard range of designs and are therefore seldom purpose made due mainly to the high cost of the moulds.

Advantages :-

1. Frames are produced under factory controlled conditions resulting in a uniform product of both quality and accuracy.
2. Repetitive casting lowers the cost of individual members.
3. Off site production releases site space for other activities.
4. Frames can be assembled in cold weather and generally by semi-skilled labour.

Disadvantages :-

1. Although a wide choice of frames is available from various manufacturers these systems lack the design flexibility of cast insitu purpose made frames.
2. Site planning can be limited by manufacturer's delivery and unloading programmes and requirements.
3. Lifting plant of a type and size not normally required by traditional construction methods may be needed.

Typical Site Activities ~

- columns positioned, aligned and supported when being connected to foundations
- temporary collar or yoke
- mobile crane to lift and place precast concrete members
- adjustable raking struts as required
- foundations cast by main contractor
Foundation Connections ~ the preferred method of connection is to set the column into a pocket cast into a reinforced concrete pad foundation and is suitable for light to medium loadings. Where heavy column loadings are encountered it may be necessary to use a steel base plate secured to the reinforced concrete pad foundation with holding down bolts.

Typical Details ~

Typical Details ~

PreCast Concrete Frames

Precast Concrete Column

Temporary Steel Wedges

Floor Slab

Reinforced Concrete Foundation

Main Bars

Binders

25 mm Clearance

Flexcell, Building Paper or Similar Joint

Cement : Sand Grout (1 : 2)

75 mm Thick Blinding

Packing as Required

Main Bars Both Ways

Steel Base Plate Welded to Column Main Bars

Mass Concrete Encasing to Steel Base Plate

Grout

Removable Bolt Boxes

Reinforced Concrete Foundation

Main Bars Both Ways

75 mm Thick Blinding
Column to Column Connection ~ precast columns are usually cast in one length and can be up to four storeys in height. They are either reinforced with bar reinforcement or they are prestressed according to the loading conditions. If column to column are required they are usually made at floor levels above the beam to column connections and can range from a simple dowel connection to a complex connection involving insitu concrete.

Typical Details ~

- **Column Supported**: Column supported on shims until grout has set - joint is then dry packed with cement mortar.
- **Joint Packed**: Joint packed with dry cement mortar.
- **Lower Column**: Lower column with mortice in top end to receive dowel bar which is grouted in.
- **Upper Column with Mortice**: Upper column with mortice in lower end to receive dowel bar.
- **Grouting Holes**: Grouting holes.
- **Rebated Edge Beam**: Rebated edge beam.
- **4 No. Threaded Studs**: 4 No. threaded studs cast into upper column.
- **Exposed and Lapped Main Reinforcing Bars**: Exposed and lapped main reinforcing bars.
- **Mild Steel Bearing Plate**: Mild steel bearing plate welded to main reinforcing bars of lower column.
- **Exposed Binders**: Exposed binders.
- **Upper Column**: Upper column.
- **Insitu Concrete**: Insitu concrete.
- **Dry Joint**: Dry joint.
- **Lower Column**: Lower column.
Beam to Column Connections ~ as with the column to column connections (see page 400) the main objective is to provide structural continuity at the junction. This is usually achieved by one of two basic methods:-

1. Projecting bearing haunches cast onto the columns with a projecting dowel or stud bolt to provide both location and fixing.

2. Steel to steel fixings which are usually in the form of a corbel or bracket projecting from the column providing a bolted connection to a steel plate cast into the end of the beam.

Typical Details ~
Principles ~ the well known properties of concrete are that it has high compressive strength and low tensile strength. The basic concept of reinforced concrete is to include a designed amount of steel bars in a predetermined pattern to give the concrete a reasonable amount of tensile strength. In prestressed concrete a precompression is induced into the member to make full use of its own inherent compressive strength when loaded. The design aim is to achieve a balance of tensile and compressive forces so that the end result is a concrete member which is resisting only stresses which are compressive. In practice a small amount of tension may be present but providing this does not exceed the tensile strength of the concrete being used tensile failure will not occur.

Comparison of Reinforced and Prestressed Concrete ~

![Diagram of Reinforced Concrete Beam]

![Diagram of Prestressed Beam]

Stress Diagrams:

Prestress + Dead Load = Transfer Stress + Live Load = Final Stress
Materials ~ concrete will shrink whilst curing and it can also suffer sectional losses due to creep when subjected to pressure. The amount of shrinkage and creep likely to occur can be controlled by designing the strength and workability of the concrete, high strength and low workability giving the greatest reduction in both shrinkage and creep. Mild steel will suffer from relaxation losses which is where the stresses in steel under load decrease to a minimum value after a period of time and this can be overcome by increasing the initial stress in the steel. If mild steel is used for prestressing the summation of shrinkage, creep and relaxation losses will cancel out any induced compression, therefore special alloy steels must be used to form tendons for prestressed work.

Tendons — these can be of small diameter wires (2 to 7 mm) in a plain round, crimped or indented format, these wires may be individual or grouped to form cables. Another form of tendon is strand which consists of a straight core wire around which is helically wound further wires to give formats such as 7 wire (6 over 1) and 19 wire (9 over 9 over 1) and like wire tendons strand can be used individually or in groups to form cables. The two main advantages of strand are:-

1. A large prestressing force can be provided over a restricted area.
2. Strand can be supplied in long flexible lengths capable of being stored on drums thus saving site storage and site fabrication space.

Typical Tendon Formats ~
Pre-tensioning - this method is used mainly in the factory production of precast concrete components such as lintels, floor units and small beams. Many of these units are formed by the long line method where precision steel moulds up to 120,000 long are used with spacer or dividing plates to form the various lengths required. In pre-tensioning the wires are stressed within the mould before the concrete is placed around them. Steam curing is often used to accelerate this process to achieve a 24 hour characteristic strength of 28 N/mm2 with a typical 28 day cube strength of 40 N/mm2. Stressing of the wires is carried out by using hydraulic jacks operating from one or both ends of the mould to achieve an initial 10% over stress to counteract expected looses. After curing the wires are released or cut and the bond between the stressed wires and the concrete prevents the tendons from regaining their original length thus maintaining the precompression or prestress.

At the extreme ends of the members the bond between the stressed wires and concrete is not fully developed due to low frictional resistance. This results in a small contraction and swelling at the ends of the wire forming in effect a cone shape anchorage. The distance over which this contraction occurs is called the transfer length and is equal to 80 to 120 times the wire diameter. To achieve a greater total surface contact area it is common practice to use a larger number of small diameter wires rather than a smaller number of large diameter wires giving the same total cross sectional area.

Typical Pre-tensioning Arrangement -

![Diagram of pre-tensioning arrangement](image-url)
Post-tensioning – this method is usually employed where stressing is to be carried out on site after casting an insitu component or where a series of precast concrete units are to be joined together to form the required member. It can also be used where curved tendons are to be used to overcome negative bending moments. In post-tensioning the concrete is cast around ducts or sheathing in which the tendons are to be housed. Stressing is carried out after the concrete has cured by means of hydraulic jacks operating from one or both ends of the member. The anchorages (see next page) which form part of the complete component prevent the stressed tendon from regaining its original length thus maintaining the precompression or prestress. After stressing the annular space in the tendon ducts should be filled with grout to prevent corrosion of the tendons due to any entrapped moisture and to assist in stress distribution. Due to the high local stresses at the anchorage positions it is usual for a reinforcing spiral to be included in the design.
Typical Post-tensioning Arrangement ~

Anchorages ~ the formats for anchorages used in conjunction with post-tensioned prestressed concrete works depends mainly on whether the tendons are to be stressed individually or as a group, but most systems use a form of split cone wedges or jaws acting against a form of bearing or pressure plate.

Typical Anchorage Details ~

FREYSSINET ANCHORAGE

- ribbed steel duct or sheath
- forge steel anchorage block
- split cone wedge or jaws
- 7 No. holes for strands and jaws
- socket for steel duct or sheath
- malleable cast iron anchorage and bearing plate cast into end of member
- fixing bolt holes
- grout hole

TYPICAL MONOSTRAND ANCHORAGE

- 30 mm long spigot for duct connection
- 120 mm long x 120 diameter female cone
- male cone driven into female cone
- external flutes in concrete male cone to receive wires of parallel lay cable
- grout hole
- tensile steel spiral to hole

406
Comparison with Reinforced Concrete — when comparing prestressed concrete with conventional reinforced concrete the main advantages and disadvantages can be enumerated but in the final analysis each structure and/or component must be decided on its own merit.

Main advantages :-
2. Makes full use of the special alloy steels used to form the prestressing tendons.
3. Eliminates tension cracks thus reducing the risk of corrosion of steel components.
4. Reduces shear stresses.
5. For any given span and loading condition a component with a smaller cross section can be used thus giving a reduction in weight.
6. Individual precast concrete units can be joined together to form a composite member.

Main Disadvantages :-
1. High degree of control over materials, design and quality of workmanship is required.
2. Special alloy steels are dearer than most traditional steels used in reinforced concrete.
3. Extra cost of special equipment required to carry out the prestressing activities.
4. Cost of extra safety requirements needed whilst stressing tendons.

As a general comparison between the two structural options under consideration it is usually found that :-
1. Up to 6,000 span traditional reinforced concrete is the most economic method.
2. Spans between 6,000 and 9,000 the two cost options are comparable.
3. Over 9,000 span prestressed concrete is more economical than reinforced concrete.

It should be noted that generally columns and walls do not need prestressing but in tall columns and high retaining walls where the bending stresses are high, prestressing techniques can sometimes be economically applied.
Ground Anchors — these are a particular application of post-tensioning prestressing techniques and can be used to form ground tie backs to cofferdams, retaining walls and basement walls. They can also be used as vertical tie downs to basement and similar slabs to prevent flotation during and after construction. Ground anchors can be of a solid bar format (rock anchors) or of a wire or cable format for granular and cohesive soils. A lined or unlined bore hole must be drilled into the soil to the design depth and at the required angle to house the ground anchor. In clay soils the bore hole needs to be underreamed over the anchorage length to provide adequate bond. The tail end of the anchor is pressure grouted to form a bond with the surrounding soil, the remaining length being unbonded so that it can be stressed and anchored at head thus inducing the prestress. The void around the unbonded or elastic length is gravity grouted after completion of the stressing operation.

Typical Ground Anchor Details —
Cold rolled steel sections are a lightweight alternative to the relatively heavy, hot rolled steel sections that have been traditionally used in sub-framing situations, e.g. purlins, joists and sheeting rails. Cold rolled sections are generally only a few millimetres in wall thickness, saving on material and handling costs and building dead load. They are also produced in a wide variety of section profiles, some of which are shown below.

Typical section profiles ~

Equal angle
Unequal angle
Plain channel
Lipped inward channel
Lipped outward channel
Tee
Square or rectangular
Zed
Sigma

Dimensions vary considerably and many non-standard profiles are made for particular situations. A range of standard sections are produced to:

BS EN 10162: Cold rolled steel sections. Technical delivery conditions. Dimensional and cross sectional tolerances.
Structural Steelwork — the standard sections available for use in structural steelwork are given in BS 4 and BS ENs 10056 and 10210. These standards give a wide range of sizes and weights to enable the designer to formulate an economic design.

Typical Standard Steelwork Sections ~

UNIVERSAL BEAMS
203 x 133 x 25 kg/m to 914 x 419 x 388 kg/m

UNIVERSAL COLUMNS
152 x 152 x 23 kg/m to 356 x 406 x 634 kg/m

JOISTS
76 x 51 x 6.67 kg/m to 203 x 102 x 25-33 kg/m

CHANNELS
76 x 38 x 6.7 kg/m to 432 x 102 x 66.54 kg/m

HOLLOW SECTIONS
50 x 25 x 2.92 kg/m to 457 x 355 x 156 kg/m

EQUAL ANGLES
25 x 25 x 1.11 kg/m to 200 x 200 x 71.1 kg/m

UNEQUAL ANGLES
40 x 25 x 1.91 kg/m to 200 x 150 x 47.1 kg/m

HOLLOW SECTIONS
27 dia. x 1.89 kg/m to 457 dia. x 13.8 kg/m

NB. Sizes given are serial or nominal, for actual sizes see relevant BS.
Compound Sections – these are produced by welding together standard sections. Various profiles are possible, which can be designed specifically for extreme situations such as very high loads and long spans, where standard sections alone would be insufficient. Some popular combinations of standard sections include:

BEAM or COLUMN

- Standard joist, beam or column section
- Single, double, triple beam
- Steel plate welded to joists

CHANNEL

- Standard channel
- Back to back
- Back to back with flange plates
- Toe to toe
- Steel plate welded to channels
- Weld

GANTRY GIRDER

- Combination of standard channel, joist and plate sections welded together
Open Web Beams — these are particularly suited to long spans with light to moderate loading. The relative increase in depth will help resist deflection and voids in the web will reduce structural dead load.

Perforated Beam — a standard beam section with circular voids cut about the neutral axis.

Castellated Beam — a standard beam section web is profile cut into two by oxy-acetylene torch. The projections on each section are welded together to create a new beam 50% deeper than the original.

Litzka Beam — a standard beam cut as the castellated beam, but with overall depth increased further by using spacer plates welded to the projections. Minimal increase in weight.

Note: Voids at the end of open web beams should be filled with a welded steel plate, as this is the area of maximum shear stress in a beam.
Lattices — these are an alternative type of open web beam, using standard steel sections to fabricate high depth to weight ratio units capable of spans up to about 15 m. The range of possible components is extensive and some examples are shown below:

PLATE GIRDER
- standard ‘T’ section
- steel plate welded to standard angles
- steel bar laced web
- angles

TUBULAR LATTICE
- end bearing plate
- top and bottom tubular booms
- tubular bracing

DOWELLED LATTICE
- steel channels
- timber insert for deck and ceiling fixing
- steel dowel lacing
- weld

Note: span potential for lattice beams is approximately $24 \times D$
Structural Steelwork Connections — these are either shop or site connections according to where the fabrication takes place. Most site connections are bolted whereas shop connections are very often carried out by welding. The design of structural steelwork members and their connections is the province of the structural engineer who selects the type and number of bolts or the size and length of weld to be used according to the connection strength to be achieved.

Typical Connection Examples —
Typical Connection Examples ~

'T' or similar section welded to beam as firring unless beam laid to fall

universal column

universal beam site connected to cap plate

cap plate shop fillet welded to column

3mm clearance unless beam is continuous

TOP BEAM BEARING CONNECTIONS

upper column

web cleats to both sides shop welded to cap plate

solid or laminated steel packing

site connections

fish plates shop welded to lower column

lower column of equal size

COLUMN TO COLUMN CONNECTIONS

depth of notch sufficient to clear flange thickness + root radius

notch length = distance from web face to flange edge + 10 mm to nearest 5mm

secondary beam

3mm clearance site connections

main beam

secondary beam

web cleats to both sides shop welded to secondary beam

BEAM TO BEAM CONNECTION

NB. All holes for bolted connections must be made from backmarking the outer surface of the section(s) involved. For actual positions see structural steelwork manuals.
Fire Resistance of Structural Steelwork — although steel is a non-combustible material with negligible surface spread of flame properties it does not behave very well under fire conditions. During the initial stages of a fire the steel will actually gain in strength but this reduces to normal at a steel temperature range of 250 to 400°C and continues to decrease until the steel temperature reaches 550°C when it has lost most of its strength. Since the temperature rise during a fire is rapid, most structural steelwork will need protection to give it a specific degree of fire resistance in terms of time. Part B of the Building Regulations sets out the minimum requirements related to building usage and size. BRE Report 128 'Guidelines for the construction of fire resisting structural elements' gives acceptable methods.

Typical Examples for a 2 Hour Fire Resistance —

![Diagram of fire resistance examples](image-url)
Section Factors — these are criteria found in tabulated fire protection data such as the Loss Prevention Certification Board's Standards. These factors can be used to establish the minimum thickness or cover of protective material for structural sections. This interpretation is usually preferred by buildings insurance companies, as it often provides a standard in excess of the building regulations. Section factors are categorised: < 90, 90 – 140 and > 140. They can be calculated by the following formula:

Section Factor \(= \frac{H_p}{A} \) (m\(^{-1}\))

\(H_p = \) Perimeter of section exposed to fire (m)
\(A = \) Cross sectional area of steel (m\(^2\)) [see BS 4-1 or Structural Steel Tables]

Examples:

306.6 mm

\(H_p = (2 \times 124.3) + (2 \times 306.6) + 2(124.3 - 8) = 1.0944 \) m
\(A = 53.2 \) cm\(^2\) or \(0.00532 \) m\(^2\)

Section Factor, \(\frac{H_p}{A} = \frac{1.0944}{0.00532} = 205 \)

As beam above, but 3 sides only exposed

\(H_p = 124.3 + (2 \times 306.6) = 0.7375 \) m
\(A = 53.2 \) cm\(^2\) or \(0.00532 \) m\(^2\)

Section Factor, \(\frac{H_p}{A} = \frac{0.7375}{0.00532} = 138 \)
References: BS 4-1: Structural steel sections. Specification for hot-rolled sections.

Simple beam design (Bending)
Formula:

\[Z = \frac{M}{f} \]

where:
- \(Z \) = section or elastic modulus (BS 4-1)
- \(M \) = moment of resistance \(\geq \) max. bending moment
- \(f \) = fibre stress of the material, (normally 165 N/mm\(^2\) for rolled steel sections)

In simple situations the bending moment can be calculated:

(a) Point loads

\[BM = \frac{WL}{4} \]

(b) Distributed loads

\[BM = \frac{wL^2}{8} \text{ or } \frac{WL}{8} \]

where \(W = w \times L \)

e.g.

\[BM = \frac{wL^2}{8} = \frac{50 \times 4^2}{8} = 100 \text{kNm} \]

\[Z = \frac{M}{f} = \frac{100 \times 10^6}{165} = 606 \text{cm}^3 \]

From structural design tables, e.g. BS 4-1, a Universal Beam 305 \(\times \) 127 \(\times \) 48 kg/m with section modulus (Z) of 612.4 cm\(^3\) about the x-x axis, can be seen to satisfy the calculated 606 cm\(^3\).

Note: Total load in kN can be established by summating the weight of materials — see BS648: Schedule of Weights of Building Materials, and multiplying by gravity; i.e. kg \(\times \) 9.81 = Newtons.

This must be added to any imposed loading:

People and furniture = 1.5 kN/m\(^2\)
Snow on roofs < 30\(^\circ\) pitch = 1.5 kN/m\(^2\)
Snow on roofs > 30\(^\circ\) pitch = 0.75 kN/m\(^2\)
Simple beam design (Shear)
From the previous example, the section profile is:-

![Diagram of beam cross-section with dimensions]

Maximum shear force normally occurs at the support points, i.e., near the end of the beam. Calculation is made of the average stress value on the web sectional area.

Using the example of 200 kN load distributed over the beam, the maximum shear force at each end support will be 100 kN.

Therefore, the average shear stress $=$ \(\frac{\text{shear force}}{\text{web sectional area}} \)

\[
= \frac{100 \times 10^3}{2762.56} \\
= 36.20 \text{ N/mm}^2
\]

Grade 43 steel has an allowable shear stress in the web of 110 N/mm\(^2\). Therefore the example section of serial size: 305 mm \(\times\) 127 mm \(\times\) 48 kg/m with only 36.20 N/mm\(^2\) calculated average shear stress is more than capable of resisting the applied forces.

Grade 43 steel has a characteristic yield stress of 250 N/mm\(^2\) in sections up to 40 mm thickness. This grade is adequate for most applications, but more expensive grades 50 and 55 steel are available for higher stress situations.
Simple beam design (Deflection)

The deflection due to loading, other than the weight of the structure, should not exceed 1/360 of the span.

The formula to determine the extent of deflection varies, depending on:

(a) Point loading

\[
\text{Deflection} = \frac{WL^3}{48EI}
\]

(b) Uniformly distributed loading

\[
\text{Deflection} = \frac{5WL^3}{384EI}
\]

where: \(W \) = load in kN
\(L \) = span in cm
\(E \) = Young's modulus of elasticity (typically 21,000 kN/cm\(^2\) for steel)
\(I \) = 2nd moment of area about the x-x axis (see BS 4-1)

Using the example of 200 kN uniformly distributed over a 4m span:

\[
\text{Deflection} = \frac{5WL^3}{384EI} = \frac{5 \times 200 \times 4^3 \times 100^3}{384 \times 21000 \times 9504} = 0.835 \text{ cm}
\]

Permissible deflection is 1/360 of 4 m = 11.1 mm or 1.11 cm.

Therefore actual deflection of 8.35 mm or 0.835 cm is acceptable.

Simple column design

Steel columns or stanchions have a tendency to buckle or bend under extreme loading. This can be attributed to:

(a) length.
(b) cross sectional area.
(c) method of end fixing, and
(d) the shape of section.

(b) and (d) are incorporated into a geometric property of section, known as the radius of gyration (r). It can be calculated:

\[r = \sqrt{\frac{I}{A}} \]

where: \(I \) = 2nd moment of area
\(A \) = cross sectional area

Note: \(r \), \(I \), and \(A \) are all listed in steel design tables, e.g. BS 4-1.

The radius of gyration about the y-y axis is used for calculation, as this is normally the weaker axis.

Effective length of columns

Position and direction fixed is location at specific points by beams or other means of retention. Position fixed only means hinged or pinned.

eg. A Universal Column 203 mm \(\times \) 203 mm \(\times \) 46 kg/m, 10 m long, position and direction fixed both ends. Determine the maximum axial loading.

Effective length (\(l \)) = 0.7 \(\times \) 10 m = 7 m

(r) from BS 4-1 = 51.1 mm

Slenderness ratio = \(\frac{l}{r} \) = \(\frac{7 \times 10^3}{51.1} \) = 137

Maximum allowable stress for grade 43 steel = 49 N/mm\(^2\) (BS 449-2)

Cross sectional area of stanchion (UC) = 5880 mm\(^2\) (BS 4-1)

The total axial load = \(\frac{49 \times 5880}{10^3} \) = 288kN (approx. 29 tonnes)
Portal Frames ~ these can be defined as two dimensional rigid frames which have the basic characteristic of a rigid joint between the column and the beam. The main objective of this form of design is to reduce the bending moment in the beam thus allowing the frame to act as one structural unit. The transfer of stresses from the beam to the column can result in a rotational movement at the foundation which can be overcome by the introduction of a pin or hinge joint. The pin or hinge will allow free rotation to take place at the point of fixity whilst transmitting both load and shear from one member to another. In practice a true ‘pivot’ is not always required but there must be enough movement to ensure that the rigidity at the point of connection is low enough to overcome the tendency of rotational movement.

Typical Single Storey Portal Frame Formats ~

FIXED or RIGID PORTAL FRAME:
all joints or connections are rigid giving low bending moments than other formats. Used for small to medium span frames where moments at foundations are not excessive.

TWO PIN PORTAL FRAME:
pin joints or hinges used at foundation connections to eliminate tendency of base to rotate. Used where high base moments and weak ground are encountered.

THREE PIN PORTAL FRAME:
pin joints or hinges used at foundation connections and at centre of beam which reduces bending moment in beam but increases deflection. Used as an alternative to a 2 pin frame.
Typical Precast Concrete Portal Frame Details ~

Portal Frames

- **300 x 200** spanning member or beam
- **rigid joint**
- **300 x 200 supporting member or column**
- **floor level**
- **reinforced concrete pad foundation**
- **600**
- **2,400 x 600** up to 7,200

TYPICAL SINGLE SPAN PORTAL FRAME
(frame spacing 4,500 to 6,000%)

- **300 x 200** beam
- **valley gutter seating**
- **rigid joints**
- **300 x 200 column**
- **floor level**
- **RC pad foundation**

TYPICAL MULTI-SPAN PORTAL FRAME
(frame spacing 4,500 to 6,000%)

- **25**
- **1:2 cm/s grout**
- **column wedge and grouted into pocket formed in foundation**
- **600**
- **pipping if required**

TYPICAL SPLICE JOINT
(joint made at point of contraflexure)

- **20 mm dia. fixing bolts**
- **reinforced concrete pad foundation to design**

TYPICAL FOUNDATION DETAILS
Typical Precast Concrete Portal Frame Hinge Details ~

Portal Frames

TYPICAL APEX OR CROWN HINGE DETAILS

TYPICAL FOUNDATION CONNECTION HINGE DETAILS
Typical Steel Portal Frame Details

- **Site bolted ridge plates**
- **UB section spanning member or beam**
- **Portal Frames**
- **Purlin cleat**
- **Haunch or knee gusset**
- **UB or UC section supporting member**
- **Reinforced concrete pad foundation**
- **Floor level**

TYPICAL SINGLE SPAN PORTAL FRAME
(frame spacing 4.500 to 6.000%)

- **Haunch or knee gusset**
- **Gusset plate out of UB section**
- **UB or UC section supporting member**

TYPICAL BEAM TO COLUMN JOINT

- **UB section spanning member or beam**
- **Site bolted fixing plate welded to beam**
- **UB or UC section supporting member or column**

TYPICAL MULTI-SPAN PORTAL FRAME
(frame spacing 4.500 to 6.000%)

- **Haunch or knee gusset**
- **Gusset plate out of UB section**
- **UB section spanning member or beam**
- **Site bolted ridge plates welded to ends of beam**
- **UB or UC section supporting member**

TYPICAL SPLICING JOINT
(joint made at point of contraflexure)

- **Butt jointed beams**
- **Holding down bolts**
- **Base plate**
- **Web cleats if required**
- **Site bolted top and bottom fish plates**

NB. Pin joints can be formed using hinge plates as shown for PCC frames on page 424
Laminated Timber ~ sometimes called ‘Gluelam’ and is the process of building up beams, ribs, arches, portal frames and other structural units by gluing together layers of timber boards so that the direction of the grain of each board runs parallel with the longitudinal axis of the member being fabricated.

Laminates ~ these are the layers of board and may be jointed in width and length.

Joints ~

Width ~ joints in consecutive layers should lap twice the board thickness or one quarter of its width whichever is the greater.

Length ~ scarf and finger joints can be used. Scarf joints should have a minimum slope of 1 in 12 but this can be steeper (say 1 in 6) in the compression edge of a beam:

![Diagram showing scarf joint and finger joint](image)

Moisture Content ~ timber should have a moisture content equal to that which the member will reach in service and this is known as its equilibrium moisture content; for most buildings this will be between 11 and 15%. Generally at the time of gluing timber should not exceed 15 ± 3% in moisture content.
Vertical Laminations ~ not often used for structural laminated timber members and is unsatisfactory for curved members.

Horizontal Laminations ~ most popular method for all types of laminated timber members. The stress diagrams below show that laminates near the upper edge are subject to a compressive stress whilst those near the lower edge to a tensile stress and those near the neutral axis are subject to shear stress.

Flat sawn timber shrinks twice as much as quarter sawn timber therefore flat and quarter sawn timbers should not be mixed in the same member since the different shrinkage rates will cause unacceptable stresses to occur on the glue lines.

Planing ~ before gluing, laminates should be planed so that the depth of the planer cutter marks are not greater than 0.025 mm.
Gluing ~ this should be carried out within 48 hours of the planing operation to reduce the risk of the planed surfaces becoming contaminated or case hardened (see page 429). Just before gluing up the laminates they should be checked for ‘cupping.’ The amount of cupping allowed depends upon the thickness and width of the laminates and has a range of 0·75 mm to 1·5 mm.

Laminate Thickness ~ no laminate should be more than 50 mm thick since seasoning up to this thickness can be carried out economically and there is less chance of any individual laminate having excessive cross grain strength.

Straight Members ~ laminate thickness is determined by the depth of the member, there must be enough layers to allow the end joints (i.e. scarf or finger joints — see page 426) to be properly staggered.

Curved Members ~ laminate thickness is determined by the radius to which the laminate is to be bent and the species together with the quality of the timber being used. Generally the maximum laminate thickness should be 1/150 of the sharpest curve radius although with some softwoods 1/100 may be used.

Typical Laminated Timber Curved Member ~

![Diagram of laminated timber curved member](image)

- laminates feather edged or run out on outside
- laminated timber half portal frame
- apex butt jointed and bolted
- rafter
- knee
- radius to suit laminate thickness
- leg
- foot housed in purpose made steel shoe and bolted to reinforced concrete foundation
Adhesives - although timber laminates are carefully machined, the minimum of cupping permitted and efficient cramping methods employed it is not always possible to obtain really tight joints between the laminates. One of the important properties of the adhesive is therefore that it should be gap filling. The maximum permissible gap being 1.25 mm.

There are four adhesives suitable for laminated timber work which have the necessary gap filling property and they are namely:

1. Casein – this is made from sour milk to the requirements of BS 5442. It is a cold setting adhesive in the form of a powder which is mixed with water, it has a tendency to stain timber and is only suitable for members used in dry conditions of service.

2. Urea Formaldehyde – this is a cold setting resin glue formulated to MR/GF (moisture resistant/gap filling). Although moisture resistant it is not suitable for prolonged exposure in wet conditions and there is a tendency for the glue to lose its strength in temperatures above 40°C such as when exposed to direct sunlight. The use of this adhesive is usually confined to members used in dry, unexposed conditions of service. This adhesive will set under temperatures down to 10°C.

3. Resorcinol Formaldehyde – this is a cold setting glue formulated to WBP/GF (weather and boilproof/gap filling). It is suitable for members used in external situations but is relatively expensive. This adhesive will set under temperatures down to 15°C and does not lose its strength at high temperatures.

4. Phenol Formaldehyde – this is a similar glue to resorcinol formaldehyde but is a warm setting adhesive requiring a temperature of above 86°C in order to set. A mixture called phenol/resorcinol formaldehyde is available and is sometimes used having similar properties to but less expensive than resorcinol formaldehyde but needs a setting temperature of at least 23°C.

Preservative Treatment – this can be employed if required, provided that the pressure impregnated preservative used is selected with regard to the adhesive being employed. See also page 470.
Composite Beams — stock sizes of structural softwood have sectional limitations of about 225mm and corresponding span potential in the region of 6m. At this distance, even modest loadings could interpose with the maximum recommended deflection of 0.003 × span.

Fabricated softwood box, lattice and plywood beams are an economic consideration for medium spans. They are produced with adequate depth to resist deflection and with sufficient strength for spans into double figures. The high strength to weight ratio and simple construction provides advantages in many situations otherwise associated with steel or reinforced concrete, e.g. frames, trusses, beams and purlins in gymnasia, workshops, garages, churches, shops, etc. They are also appropriate as purlins in loft conversion.
Composite Joist ~ a type of lattice frame, constructed from a pair of parallel and opposing stress graded softwood timber flanges, separated and jointed with a web of V shaped galvanised steel plate connectors. Manufacture is off-site in a factory quality controlled situation. Here, joists can be made in standard or specific lengths to order. Depending on loading, spans to about 8 m are possible at joist spacing up to 600 mm.

Advantages over solid timber joists:
- Large span to depth ratio.
- High strength to weight ratio.
- Alternative applications, including roof members, purlins, etc.
- Generous space for services without holing or notching.
- Minimal movement and shrinkage.
- Wide flanges provide large bearing area for decking and ceiling board.
Multi-storey Structures ~ these buildings are usually designed for office, hotel or residential use and contain the means of vertical circulation in the form of stairs and lifts occupying up to 20% of the floor area. These means of circulation can be housed within a core inside the structure and this can be used to provide a degree of restraint to sway due to lateral wind pressures (see next page).

Typical Basic Multi-storey Structure Types ~

TRADITIONAL FRAMED STRUCTURES
- beams and floors span between columns and core
- frame composed of columns and connecting beams
- cantilever slab or platform as base or seating for columns

PROPPED STRUCTURES
- cross beams in both directions
- lightweight non-load bearing infill cladding panels
- beams and floors cantilever from core

SUSPENDED STRUCTURES
- internal core
- hanger or suspended columns

CANTILEVER STRUCTURES
- internal core
- columns not required

beams and floors span between columns and core

external propped columns

internal core

frame composed of columns and connecting beams
Typical Multi-storey Structures ~ the formats shown below are designed to provide lateral restraint against wind pressures.

BRACED STRUCTURES - bracing used to give stability so that columns can be designed as pure compression members.

SHEAR WALL STRUCTURES - wind pressures transmitted from cladding to shear walls by floors.

CORE STRUCTURES - wind pressures transmitted from cladding to core by floors.

HULL CORE STRUCTURES - rigid and braced framework called the hull acts with core through floors to form a rigid structure.
Roof coverings to provide adequate weather exclusion, have reasonable durability and be aesthetically acceptable.

Roof to provide resistance to excessive heat loss, at least to the standard set out in Part L of the Building Regulations.

Roof structure to provide resistance to failure due to overstressing. It must be able to support own self weight, wind loads and imposed loads such as snow.

Roof coverings to comply with Part B of the Building Regulations regarding fire spread.

Provide natural daylight through the roof if required.

Provide adequate drainage of roof coverings.

Roof to provide the required degree of sound insulation.

Roof to be accessible for maintenance.
Roofs ~ these can be classified as either:-
 Flat — pitch from 0° to 10°
 Pitched — pitch over 10°

It is worth noting that for design purposes roof pitches over 70° are classified as walls.

Roofs can be designed in many different forms and in combinations of these forms some of which would not be suitable and/or economic for domestic properties.

Basic Roof Forms

![Diagram of roof features](image)

- **Flashings to weather joint between roof and parapet**
- **Support wall projecting above roof level ~ the projection is called a parapet**
- **Skirting**
- **Coping**
- **Small splayed kerb or water check to verge**
- **Roof slopes towards drainage edge or eaves angle of slope governed by type of roof covering**
- **Fascia**
- **Gutter to collect discharged rainwater from roof and convey it to the rainwater pipe(s)**
- **Rainwater pipe conveys discharged rainwater to the drains**
- **Verge ~ the non-drained edge of a roof**
- **Closing member of roof construction is called a fascia**

FLAT ROOFS
Basic Roof Forms

THE MANSARD OR GAMBREL ROOF

A COMBINATION OF BASIC FORMS
Pitched Roofs ~ the primary functions of any domestic roof are to:-

1. Provide an adequate barrier to the penetration of the elements.
2. Maintain the internal environment by providing an adequate resistance to heat loss.

A roof is in a very exposed situation and must therefore be designed and constructed in such a manner as to:-

1. Safely resist all imposed loadings such as snow and wind.
2. Be capable of accommodating thermal and moisture movements.
3. Be durable so as to give a satisfactory performance and reduce maintenance to a minimum.

Component Parts of a Pitched Roof

- **Valley -** internal angle of a roof
- **Hip -** external angle of a roof
- **Ridge -**
- **Ridge Tile -** capping to roof covering
- **Ridge Board -** spine of roof carcass
- **Gable End -**
- **Eaves -** fascia
- **Hip or Jack rafters -**
- **Battens -** fixing medium for roof coverings and underlay which acts as secondary barrier to elements
- **Roof Covering -** provides resistance to penetration of elements and conveys surface water to gutter at eaves
- **Purlin -** reduces rafter span
- **Rafters -** support members for roof coverings
- **Verge -** termination at a gable directs surface water back onto main roof area
Timber Pitched Roofs up to 7.5m Span—Types

LEAN TO ROOF

32mm thick pitching plate fixed to wall
100 x 50 rafters at 400 °C/c
100 x 75 wall plate
2.400 max.

COUPLE ROOF

32mm thick ridge board
100 x 75 wall plate
3.600 maximum
100 x 50 rafters in pairs at 400 °C/c
rafters in pairs

CLOSED COUPLE ROOF

32mm thick ridge board
150 x 50 rafters in pairs at 400 °C/c
200 x 50 collars or ceiling joists at 400 °C/c
collars fixed to sides of rafters
100 x 75 wall plate
4.800 maximum

COLLAR ROOF

32mm thick ridge board
100 x 50 rafters in pairs at 400 °C/c
dovetail halving joint
150 x 50 collars at 400 °C/c

minimum sizes for members of domestic type roofs can be obtained from 'Span Tables for Solid Timber Members' published by TRADA Technology Ltd.

100 x 75 wall plate
5.500 maximum
Timber Pitched Roofs up to 7.5 m Span—Types

32mm thick ridge board

100 x 50 rafters in pairs at 400% c

150 x 63 purlin at mid-span of rafter

100 x 50 struts at 1600% c fixed to purlin

100 x 50 hangers at 1600% c fixed to collar and binder

fascia fixed to rafters

sprocket fixed to rafter

ALTERNATIVE PURLIN DETAIL
continuous tilting fillet fixed over rafters

strut

hanger

block beam filling

rafter

purlin

collar

strut

hanger

rafter

100 x 50 collar at 1600% c fixed to rafters

100 x 50 collars at 1600% c fixed to rafters

100 x 50 binders at mid-span of ceiling joist

100 x 50 wall plate

100 x 75 wall plate

100 x 50 ceiling joists at 400% c

100 x 50 binder at mid-span of ceiling joist

internal load bearing wall

CLOSED EAVES

OPEN EAVES

NB. collars, struts and hangers occur at every 4th pair of rafters

DOUBLE RAFTER OR PURLIN ROOF
Roof Trusses ~ these are triangulated plane roof frames designed to give clear spans between the external supporting walls. They are usually prefabricated or partially prefabricated off site and are fixed at 1.800 centres to support purlins which accept loads from the infill rafters.

Diagram Description

- **25 mm thick ridge**
- **24 No. triangular teeth bent alternately at 90° to face of steel plate**
- **100 x 38 rafter**
- **125 x 50 purlin at mid-span of rafter**
- **100 x 50 strut notched under purlin**
- **100 x 50 strut notched under rafter and over joist**
- **125 x 50 binder**
- **38mm thick packing**
- **2 No. 100 x 38 ties**
- **2 No. ties**
- **100 x 38 hanger**
- **strut**
- **fascia sprocket**
- **sqr**
- **binder**
- **100 x 75 wall plate**
- **100 x 38 tie or ceiling joist – could be lapped or butt jointed with fish plates at centre**
- **100 x 75 wall plate**

Typical Roof Truss Detail

Infill between trusses to be 100 x 38 rafters at 450mm centres

Timber Pitched Roofs up to 7.5m Span—Types
Trussed Rafters ~ these are triangulated plane roof frames designed to give clear spans between the external supporting walls. They are delivered to site as a prefabricated component where they are fixed to the wall plates at 600mm centres. Trussed rafters do not require any ridge board or purlins since they receive their lateral stability by using larger tiling battens (50 × 25mm) than those used on traditional roofs.

Longitudinal ties (75 × 38) fixed over ceiling ties and under internal ties near to roof apex and rafter diagonal bracing (75 × 38) fixed under rafters at gable ends from eaves to apex may be required to provide stability bracing – actual requirements specified by manufacturer. Lateral restraint to gable walls at top and bottom chord levels in the form of mild steel straps at 2000 maximum centres over 2 No. trussed rafters may also be required.
Gambrel roofs are double pitched with a break in the roof slope. The pitch angle above the break is less than 45° relative to the horizontal, whilst the pitch angle below the break is greater. Generally, these angles are 30° and 60°.

Gambrels are useful in providing more attic headroom and frequently incorporate dormers and rooflights. They have a variety of constructional forms.

Typically —

Intermediate support can be provided in various ways as shown above. To create headroom for accommodation in what would otherwise be attic space, a double head plate and partition studing is usual. The collar beam and rafters can conveniently locate on the head plates or prefabricated trusses can span between partitions.
Roof Underlays – sometimes called sarking or roofing felt provides the barrier to the entry of snow, wind and rain blown between the tiles or states, it also prevents the entry of water from capillary action.

Suitable Materials –

Bitumen fibre based felts supplied in rolls 1m wide × 10 or Bitumen glass fibre based felts 20m long to BS 747

Sheathing and Hair felts – supplied in rolls 810mm wide × 25m long to the recommendations of BS 747: Reinforced bitumen sheets for roofing. Specification.

Plastic Sheeting underlays – these are lighter, require less storage space, have greater flexibility at low temperatures and high resistance to tearing but have a greater risk to the formation of condensation than the BS 747 felts and should not be used on roof pitches below 20°. Materials permeable to water vapour are preferred as these do not need to be perforated to ventilate the roof space. See BS 4016: Specification for flexible building membranes (breather type).

Underlays are fixed initially with galvanised clout nails or st/st staples but are finally secured with the tiling or slating batten fixings.
Double Lap Tiles ~ these are the traditional tile covering for pitched roofs and are available made from clay and concrete and are usually called plain tiles. Plain tiles have a slight camber in their length to ensure that the tail of the tile will bed and not ride on the tile below. There is always at least two layers of tiles covering any part of the roof. Each tile has at least two nibs on the underside of its head so that it can be hung on support battens nailed over the rafters. Two nail holes provide the means of fixing the tile to the batten, in practice only every 4th course of tiles is nailed unless the roof exposure is high. Double lap tiles are laid to a bond so that the edge joints between the tiles are in the centre of the tiles immediately below and above the course under consideration.

Typical Plain Tile Details ~

![Diagram of Double Lap Tiling](image-url)

For other types shapes and sections see BS EN 1304
Double Lap Tiling

Typical details ~

- Half round ridge tiles bedded in cement: (1:3) butt jointed in length with ends of ridge tiles filled with mortar and tile slip inserts.
- Under ridge top course tile.
- 38 x 25 timber battens (see note 2).
- Plain tiles.

RIDGE DETAIL

EAVES DETAIL

Note 1: Through ventilation is necessary to prevent condensation occurring in the roof space.

Note 2: 50 x 25 where rafter spacing is 600 mm.

margin = gauge

\[
\text{tile length - lap} = \frac{265 - 65}{2} = \frac{100}{2} = 100\text{mm}
\]
Note 1. If a cavity closer is also required to function as a cavity barrier to prevent fire spread, it should provide at least 30 minutes fire resistance. (B. Reg. A.D. B3 Section 8).

Note 2. A breather membrane is an alternative to conventional bituminous felt as an under-tiling layer. It has the benefit of restricting liquid water penetration whilst allowing water vapour transfer from within the roof space. This permits air circulation without perforating the under-tiling layer.
Where a roof space is used for habitable space, insulation must be provided within the roof slope. Insulation above the rafters (as shown) creates a ‘warm roof’, eliminating the need for continuous ventilation. Insulation placed between the rafters creates a ‘cold roof’, requiring a continuous 50mm ventilation void above the insulation to prevent the possible occurrence of interstitial condensation.

Suitable rigid insulants include: low density polyisocyanurate (PIR) foam, reinforced with long strand glass fibres, both faces bonded to aluminium foil with joints aluminium foil taped on the upper surface; high density mineral wool slabs over rafters with less dense mineral wool between rafters.

An alternative location for the breather membrane is under the counter battens. This is often preferred as the insulation board will provide uniform support for the underlay. Otherwise, extra insulation could be provided between the counter battens, retaining sufficient space for the underlay to sag between rafter positions to permit any rainwater penetration to drain to eaves.
Typical Details ~

HIP DETAIL USING BONNET HIP TILES

- underlay
- half round ridge tile
- bonnet hip tiles nailed and bedded in cm.mm (1:3) to hip
- tile slip bedded in cement mortar

38 x 25 timber battens fixed to 100 mm gauge

eaves tile course

plain tiles bonded with hip tiles

HIP DETAIL USING HALF ROUND TILES

- roofing felt or underlay
- half round ridge tile
- half round hip capping bedded in cm.mm (1:3)
- galvanised hip iron screwed to top of hip rafter

38 x 25 timber battens fixed to 100 mm gauge

eaves tile course

plain tiles mitred under hip capping

VALLEY DETAIL USING CURVED VALLEY TILES

38 x 25 timber battens fixed to 100 mm gauge

eaves tile course

underlay

plain tiles

curved valley tiles
Double Lap Tiling

Typical Details ~

70° angle turned 25mm into brick joint
No. 5 lead
STEPPED FLASHING

75

75

100

gauge + lap
plain tiles

38 x 25 s/w timber battens fixed to 100mm gauge
underlay

tile and a half tiles in alternate courses
stepped flashing dressed over upstand of soakers and wedged and pointed into brick joints

ABUTMENT DETAIL

underlay

plain tiles

38 x 25 s/w timber battens at 100mm gauge
eaves course
tile and a half tiles in alternate courses

VERGE DETAIL
Single Lap Tiling ~ so called because the single lap of one tile over another provides the weather tightness as opposed to the two layers of tiles used in double lap tiling. Most of the single lap tiles produced in clay and concrete have a tongue and groove joint along their side edges and in some patterns on all four edges which forms a series of interlocking joints and therefore these tiles are called single lap interlocking tiles. Generally there will be an overall reduction in the weight of the roof covering when compared with double lap tiling but the batten size is larger than that used for plain tiles and as a minimum every tile in alternate courses should be twice nailed although a good specification will require every tile to be twice nailed. The gauge or batten spacing for single lap tiling is found by subtracting the end lap from the length of the tile.

Typical Single Lap Tiles ~

ROLL TYPE TILE
minimum pitch 30°
head lap 75mm
side lap 30mm
gauge 343mm
linear coverage 300mm

TROUGH TYPE TILE
minimum pitch 15°
head lap 75mm
side lap 38mm
gauge 338mm
linear coverage 292mm
Typical Details ~

- Hips – can be finished with a half round tile as a capping as shown for double lap tiling on page 449.
- Valleys – these can be finished by using special valley trough tiles or with a lead lined gutter – see manufacturer’s data.

RIDGE DETAIL

underside of deep profiles filled with filler piece or bedded in cm.mt. on eaves course of plain tiles

margin = gauge = tile length – lap

EAVES DETAIL

100 x 50 wall plate

external wall with thermal blockwork inner leaf

vapour check plasterboard

100 x 50 wall plate

cavity insulation

exhaust ventilation gap

ventilation spacer

ceiling joists

rafters

margin

lap

half round ridge tile

gauge

interlocking single lap tiles each nailed or clipped to battens

plain tile slip or dentils bedded in cm. mt. in troughs of profiled tiles

50 x 25 timber batten

ridge

rafters

underlay
Slates ~ slate is a natural dense material which can be split into thin sheets and cut to form a small unit covering suitable for pitched roofs in excess of 25° pitch. Slates are graded according to thickness and texture, the thinnest being known as ‘Bests’. These are of 4mm nominal thickness. Slates are laid to the same double lap principles as plain tiles. Ridges and hips are normally covered with half round or angular tiles whereas valley junctions are usually of mitred slates over soakers. Unlike plain tiles every course is fixed to the battens by head or centre nailing, the latter being used on long slates and on pitches below 35° to overcome the problem of vibration caused by the wind which can break head nailed long slates.

Typical Details ~

\[\text{gauge in mm} = \frac{\text{slate length} - (\text{lap} + 25)}{2} \]

NB. gauge for centre nailed slates = (slate length - lap) / 2
The UK has been supplied with its own slate resources from quarries in Wales, Cornwall and Westmorland. Imported slate is also available from Spain, Argentina and parts of the Far East.

e.g. Countess slate, 510 × 255mm laid to a 30° pitch with 75mm head lap.

Batten gauge = \((\text{slate length} - \text{lap}) \div 2\)

\[= (510 - 75) \div 2 = 218 \text{ mm}.\]

Holing gauge = batten gauge + head lap + 8 to 15 mm,

\[= 218 + 75 + (8 \text{ to } 15 \text{ mm}) = 301 \text{ to } 308 \text{ mm}.\]

Side lap = 255 \div 2 = 127 \text{ mm}.

Margin = batten gauge of 218 \text{ mm}.

Eaves course length = head lap + margin = 293 \text{ mm}.

Traditional slate names and sizes (mm) –

Empress 650 x 400 Wide Viscountess 460 x 255
Princess 610 x 355 Viscountess 460 x 230
Duchess 610 x 305 Wide Ladies 405 x 255
Small Duchess 560 x 305 Broad Ladies 405 x 230
Marchioness 560 x 280 Ladies 405 x 205
Wide Countess 510 x 305 Wide Headers 355 x 305
Countess 510 x 255 Headers 355 x 255
... 510 x 230 Small Ladies 355 x 203
... 460 x 305 Narrow Ladies 355 x 180

Sizes can also be cut to special order.

Generally, the larger the slate, the lower the roof may be pitched. Also, the lower the roof pitch, the greater the head lap.

<table>
<thead>
<tr>
<th>Slate quality</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best</td>
<td>4</td>
</tr>
<tr>
<td>Medium strong</td>
<td>5</td>
</tr>
<tr>
<td>Heavy</td>
<td>6</td>
</tr>
<tr>
<td>Extra heavy</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Roof pitch (degrees)</th>
<th>Min. head lap (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>115</td>
</tr>
<tr>
<td>25</td>
<td>85</td>
</tr>
<tr>
<td>35</td>
<td>75</td>
</tr>
<tr>
<td>45</td>
<td>65</td>
</tr>
</tbody>
</table>

See also:

1. BS EN 12326-1: Slate and stone products for discontinuous roofing and cladding. Product specification.
2. Slate producers’ catalogues.
Roof hip examples —

Close mitred hip, roof pitch > 30°
- Hip rafter
- Jack rafter
- Underlay in two layers, overlapping at least 300 mm each side of hip
 - 50 × 25 mm batten
- Code 3 lead soaker under each pair of mitred slates
- Opposing pairs of mitre cut slates
- Eaves course
- Standard slate

Mitred hip with clay or concrete hip tiles
- Hip rafter
- Jack rafter
- Batten
- Double layer of underlay at hip, at least 300 mm overlap each side of hip
- Mitred slates
- Concrete or clay hip tile mortar bedded over mitred slates
- Hip iron at eaves
Roof valley examples —

50 × 25 mm batten

code 3 lead soakers, min. 150 mm wide at head and at least half slate width at bottom

underlay in two layers at valley, min. 300 mm each side of valley rafter

mitre cut slates in opposing pairs

standard slate

eaves course

Mitre cut valley

Limitations:
1. Roof pitch > 45°
2. Valley angle < 90°
3. Valley length < 6 m

Alternatives

valley rafter

wide lay boards in valley to support taper cut slates

two supplementary layers of underlay over lay boards to overlap normal underlay

225 mm min. lay board on valley rafter, usually with additional board either side

valley rafter

two layers of underlay at valley

Laced valley

valley slates tapered to a smooth curve

Swept valley

Note: In swept valleys, cut and tapered slates are interleaved with code 3 lead soakers

457
Materials — water reed (Norfolk reed), wheat straw (Spring or Winter), Winter being the most suitable. Wheat for thatch is often known as wheat reed, long straw or Devon reed. Other thatches include rye and oat straws and sedge. Sedge is harvested every fourth year to provide long growth, making it most suitable as a ridging material.

There are various patterns and styles of thatching, relating to the skill of the thatcher and local traditions.

Typical detail —

The material composition of thatch with its natural voids and surface irregularities provides excellent insulation when dry and compact. However, when worn with possible accumulation of moss and rainwater, the U-value is less reliable. Thatch is also very vulnerable to fire. Therefore in addition to imposing a premium, insurers may require application of a surface fire retardant and a fire insulant underlay.
Flat Roofs ~ these roofs are very seldom flat with a pitch of 0° but are considered to be flat if the pitch does not exceed 10°. The actual pitch chosen can be governed by the roof covering selected and/or by the required rate of rainwater discharge off the roof. As a general rule the minimum pitch for smooth surfaces such as asphalt should be 1:80 or 0°–43’ and for sheet coverings with laps 1:60 or 0°–57’.

Methods of Obtaining Falls ~

1. Joists cut to falls

Simple to fix but could be wasteful in terms of timber unless two joists are cut from one piece of timber.

2. Joists laid to falls

Economic and simple but sloping soffit may not be acceptable but this could be hidden by a flat suspended ceiling.

3. Firrings with joist run

Simple and effective but does not provide a means of natural cross ventilation. Usual method employed.

4. Firrings against joist run

Simple and effective but uses more timber than 3 but does provide a means of natural cross ventilation.

Wherever possible joists should span the shortest distance of the roof plan.
Timber Roof Joists ~ the spacing and sizes of joists is related to the loadings and span. Actual dimensions for domestic loadings can be taken direct from recommendations in Approved Document A or they can be calculated as shown for timber beam designs. Strutting between joists should be used if the span exceeds 2.4m to restrict joist movements and twisting.

Typical Eaves Details ~
TYPICAL VERGE DETAILS - WARM DECK

- water check
- stone chippings and 3 layer built-up roofing felt
- insulation board
- softwood noggins at 400 c/c
- fascia board
- firring
- joist
- plaster board
- strutting if required
- external wall with insulated cavity
- mineral wool insulation between top of wall and decking

TYPICAL ABUTMENT DETAILS - WARM DECK

- abutment wall
- code 4 lead flashing
- insulation strip
- angle fillet
- chippings and felt
- insulation board
- vcl over decking
- firring and joist
- joist hanger
- plasterboard
A dormer is the framework for a vertical window constructed from the roof slope. It may be used as a feature, but is more likely as an economical and practical means for accessing light and ventilation to an attic room. Dormers are normally external with the option of a flat or pitched roof. Frame construction is typical of the following illustrations, with connections made by traditional housed and tenoned joints or simpler galvanized steel brackets and hangers.
Conservation of Energy ~ this can be achieved in two ways:

1. Cold Deck — insulation is placed on the ceiling lining, between joists. See page 460 for details. A metallized polyester lined plasterboard ceiling functions as a vapour control layer, with a minimum 50mm air circulation space between insulation and decking. The air space corresponds with eaves vents and both provisions will prevent moisture build-up, condensation and possible decay of timber.

2. (a) Warm Deck — rigid* insulation is placed below the waterproof covering and above the roof decking. The insulation must be sufficient to maintain the vapour control layer and roof members at a temperature above dew point, as this type of roof does not require ventilation.

 (b) Inverted Warm Deck — rigid* insulation is positioned above the waterproof covering. The insulation must be unaffected by water and capable of receiving a stone dressing or ceramic pavings.

* Resin bonded mineral fibre roof boards, expanded polystyrene or polyurethane slabs.

Typical Warm Deck Details ~
Built-up Roofing Felt — this consists of three layers of bitumen roofing felt to BS 747 or BS EN 13707, and should be laid to the recommendations of BS 8217. The layers of felt are bonded together with hot bitumen and should have staggered laps of 50mm minimum for side laps and 75mm minimum for end laps — for typical details see pages 460 & 461.

Other felt materials which could be used are the two layer polyester based roofing felts which use a non-woven polyester base instead of the woven base used in the BS 747 felts.

Mastic Asphalt — this consists of two layers of mastic asphalt laid breaking joints and built up to a minimum thickness of 20mm and should be laid to the recommendations of BS 8218. The mastic asphalt is laid over an isolating membrane of black sheathing felt complying with BS 747A (i) which should be laid loose with 50mm minimum overlaps.

Typical Details —

![Diagram of typical timber flat roof coverings]
Air carries water vapour, the amount increasing proportionally with the air temperature. As the water vapour increases so does the pressure and this causes the vapour to migrate from warmer to cooler parts of a building. As the air temperature reduces, so does its ability to hold water and this manifests as condensation on cold surfaces. Insulation between living areas and roof spaces increases the temperature differential and potential for condensation in the roof void.

Condensation can be prevented by either of the following:

* Providing a vapour control layer on the warm side of any insulation.
* Removing the damp air by ventilating the colder area.

The most convenient form of vapour layer is vapour check plasterboard which has a moisture resistant lining bonded to the back of the board. A typical patented product is a foil or metallised polyester backed plasterboard in 9.5 and 12.5 mm standard thicknesses. This is most suitable where there are rooms in roofs and for cold deck flat roofs. Ventilation is appropriate to larger roof spaces.
Roof ventilation — provision of eaves ventilation alone should allow adequate air circulation in most situations. However, in some climatic conditions and where the air movement is not directly at right angles to the building, moist air can be trapped in the roof apex. Therefore, supplementary ridge ventilation is recommended.

Insulation at ceiling level (1)

\[S = \text{span} < 10 \text{ m for roof pitches } 15^\circ - 35^\circ \]

Insulation at ceiling level (2)

\[S = \text{span} > 10 \text{ m for roof pitches } 15^\circ - 35^\circ \]

Any span for roof pitches > 35°

Insulation at ceiling level and central dividing wall

Roof pitches > 15° for any span

Note: ventilation dimensions shown relate to a continuous strip (or equivalent) of at least the given gap.
Ventilation of Roof Spaces—3

Mono-pitch or lean-to roof
Roof pitch > 15°, any span

Room within roof void
All pitches and spans

Room within roof void with obstructions
All pitches, all spans

Flat roof

BS 5250: Code of practice for control of condensation in buildings.
BRE report – Thermal Insulation: avoiding risks (2nd. ed.).
Lateral Restraint — stability of gable walls and construction at the eaves, plus integrity of the roof structure during excessive wind forces, requires complementary restraint and continuity through 30 × 5mm cross sectional area galvanised steel straps.

Exceptions may occur if the roof:-

1. exceeds 15° pitch, and
2. is tiled or slated, and
3. has the type of construction known locally to resist gusts, and
4. has ceiling joists and rafters bearing onto support walls at not more than 1.2 m centres.

Applications ~

The diagram shows various components and layouts for timber pitched roofs, including trussed rafters, gable ends, restraint straps, and ceiling joists. The diagram also includes annotations for noggings inserted with each strap and the calculation of strap thicknesses.

Applications ~

Timber Pitched Roofs

Woodworm infestation of untreated structural timbers is common. However, the smaller woodborders such as the abundant Furniture beetle are controllable. It is the threat of considerable damage potential from the House Longhorn beetle that has forced many local authorities in Surrey and the fringe areas of adjacent counties to seek timber preservation listing in the Building Regulations (see Table 1 in the above reference). Prior to the introduction of pretreated timber (c. 1960s), the House Longhorn beetle was once prolific in housing in the south of England, establishing a reputation for destroying structural roof timbers, particularly in the Camberley area.

House Longhorn beetle data:-

Latin name — Hylotrupes bajulus
Life cycle — Mature beetle lays up to 200 eggs on rough surface of untreated timber. After 2-3 weeks, larvae emerge and bore into wood, preferring sapwood to denser growth areas. Up to 10 years in the damaging larval stage. In 3 weeks, larvae change to chrysalis to emerge as mature beetles in summer to reproduce.

Timber appearance — powdery deposits (frass) on the surface and the obvious mature beetle flight holes.

Beetle appearance —

Other woodborders:-
Furniture beetle — dark brown. 6–8 mm long, lays 20–50 eggs on soft or hardwoods. Bore holes only 1–2 mm diameter.
Lyctus powder post beetle — reddish brown. 10–15 mm long, lays 70–200 eggs on sapwood of new hardwood. Bore holes only 1–2 mm in diameter.
Death Watch beetle — dark brown, sometimes speckled in lighter shades. Lays 40–80 eggs on hardwood. Known for preferring the oak timbers used in old churches and similar buildings. Bore holes about 3 mm diameter.
Preservation — treatment of timber to prevent damage from House Longhorn beetle.

In the areas specified (see previous page), all softwood used in roof structures including ceiling joists and any other softwood fixings should be treated with insecticide prior to installation. Specific chemicals and processes have not been listed in the Building Regulations since the 1976 issue, although the processes detailed then should suffice:—

1. Treatment to BS 4072.*
2. Diffusion with sodium borate (boron salts).
3. Steeping for at least 10 mins in an organic solvent wood preservative.

NB. Steeping or soaking in creosote will be effective, but problems of local staining are likely.

BS 4072 provides guidance on an acceptable blend of copper, chromium and arsenic known commercially as Tanalizing. Application is at specialist timber yards by vacuum/pressure impregnation in large cylindrical containers.

Insect treatment adds about 10% to the cost of timber and also enhances its resistance to moisture. Other parts of the structure, e.g. floors and partitions are less exposed to woodworm damage as they are enclosed. Also, there is a suggestion that if these areas received treated timber, the toxic fumes could be harmful to the health of building occupants. Current requirements for through ventilation in roofs has the added benefit of discouraging wood boring insects, as they prefer draught-free damp areas.

Refs. BS 4072: Copper/chromium/arsenic preparations for wood preservation.*
 BS 4261: Wood preservation. Vocabulary.
 BS 5589: Code of practice for preservation of timber.
 BS 5707: Specification for preparations of wood preservatives in organic solvents.

*Note: The EU are processing legislation which will prohibit the use of CCA preservatives for domestic applications and in places where the public may be in contact with it.
Damp conditions can be the source of many different types of wood-decaying fungi. The principal agencies of decay are —

- Dry rot (Serpula lacrymans or merulius lacrymans), and
- Wet rot (Coniophora cerabella)

Dry rot — this is the most difficult to control as its root system can penetrate damp and porous plaster, brickwork and concrete. It can also remain dormant until damp conditions encourage its growth, even though the original source of dampness is removed.

Appearance — white fungal threads which attract dampness from the air or adjacent materials. The threads develop strands bearing spores or seeds which drift with air movements to settle and germinate on timber having a moisture content exceeding about 25%. Fruiting bodies of a grey or red flat profile may also identify dry rot.

Typical surface appearance of dry rot —

![Diagram of dry rot]

Wet rot — this is limited in its development and must have moisture continually present, e.g. a permanent leaking pipe or a faulty dpc. Growth pattern is similar to dry rot, but spores will not germinate in dry timber.

Appearance — fungal threads of black or dark brown colour. Fruiting bodies may be olive-green or dark brown and these are often the first sign of decay.

Typical surface appearance of wet rot —

![Diagram of wet rot]
Causes —
* Defective construction, e.g. broken roof tiles; no damp-proof course.
* Installation of wet timber during construction, e.g. framing sealed behind plasterboard linings; wet joists under floor decking.
* Lack of ventilation, e.g. blocked air bricks to suspended timber ground floor; condensation in unventilated roof spaces.
* Defective water services, e.g. undetected leaks on internal pipework; blocked or broken rainwater pipes and guttering.

General treatment —
* Remove source of dampness.
* Allow affected area to dry.
* Remove and burn all affected timber and sound timber within 500 mm of fungal attack.
* Remove contaminated plaster and rake out adjacent mortar joints to masonry.

Note: This is normally sufficient treatment where wet rot is identified. However, where dry rot is apparent the following additional treatment is necessary:
* Sterilise surface of concrete and masonry.
 Heat with a blow torch until the surface is too hot to touch.
 Apply a proprietary fungicide generously to warm surface.
 Irrigate badly affected masonry and floors, i.e. provide 12mm diameter bore holes at about 500 mm spacing and flood or pressure inject with fungicide.

\[20:1 \text{ dilution of water and sodium pentachlorophenate, sodium orthophenylphate or mercuric chloride. Product manufacturers’ safety in handling and use measures must be observed when applying these chemicals.} \]

Replacement work should ensure that new timbers are pressure impregnated with a preservative. Cement and sand mixes for rendering, plastering and screeds should contain a zinc oxychloride fungicide.

Further reading —
BRE: Timber durability and treatment pack — various Digests, Information Papers and Good Repair Guides.
Remedial timber treatment in buildings — HSE Books.
Steel Roof Trusses ~ these are triangulated plane frames which carry purlins to which the roof coverings can be fixed. Steel is stronger than timber and will not spread fire over its surface and for these reasons it is often preferred to timber for medium and long span roofs. The rafters are restrained from spreading by being connected securely at their feet by a tie member. Struts and ties are provided within the basic triangle to give adequate bracing. Angle sections are usually employed for steel truss members since they are economic and accept both tensile and compressive stresses. The members of a steel roof truss are connected together with bolts or by welding to shaped plates called gussets. Steel trusses are usually placed at 3-000 to 4-500 centres which gives an economic purlin size.

Typical Steel Roof Truss Formats ~

![Steel Roof Truss Diagrams](image)

Steel Roof Trusses up to 12 m Span
Typical Steel Roof Truss Details ~

100 x 75 x 10.6 kg/m angle purlin site bolted to purlin cleats

100 x 75 x 10.6 kg/m angle rafter

150 x 75 x 17 kg/m angle purlin cleat

50 x 50 x 5.82 kg/m angle strut

50 x 50 x 5.82 kg/m angle strut

8mm thick ms gusset plate

truss symmetrical about centre line

65 x 50 x 6.75 kg/m angle tie

ALTERNATIVE EAVES DETAIL

8mm thick ms gusset plate

8mm thick ms gusset plate

65 x 51 x 6.75 fixing cleats to both sides of gusset plate

supporting steel column

65 x 51 x 6.75 kg/m ms angle tie

NB. all centre lines converge on common points

shop bolted connections
Sheet Coverings ~ the basic functions of sheet coverings used in conjunction with steel roof trusses are to :-

1. Provide resistance to penetration by the elements.
2. Provide restraint to wind and snow loads.
3. Provide a degree of thermal insulation of not less than that set out in Part L of the Building Regulations.
4. Provide resistance to surface spread of flame as set out in Part B of the Building Regulations.
5. Provide any natural daylight required through the roof in accordance with the maximum permitted areas set out in Part L of the Building Regulations.
6. Be of low self weight to give overall design economy.
7. Be durable to keep maintenance needs to a minimum.

Suitable Materials ~

Hot-dip galvanised corrugated steel sheets — BS 3083
Aluminium profiled sheets — BS 4868.
Asbestos free profiled sheets — various manufacturers whose products are usually based on a mixture of Portland cement, mineral fibres and density modifiers — BS EN 494.

Typical Profiles ~

- **CORRUGATED SHEETS**

- **DEEP CORRUGATED SHEETS**

- **TILE PROFILE SHEETS**
Typical Purlin Fixing Details ~

STEEL ANGLE PURLIN

roof sheeting
plastic cap to bolt

8 mm diameter
Z type hook
bolt

lining sheet
purlin

TIMBER PURLIN

roof sheeting

drive screw

lining sheet
purlin

ZED BEAM PURLIN

Typical Fittings ~

CLOSE FITTING RIDGE PIECE

EAVES FILLER PIECE

STEEL CHANNEL PURLIN

BARGE BOARD

EAVES CLOSURE PIECE
Typical Details ~

- 2 piece adjustable close fitting ridge
- apex finishing piece
- hook bolt
- roof sheeting
- insulation

lining sheet under insulation

cleat fixed to rafter

rafter

purlin fixed to cleat

rafter

gusset plate

tie
tie

APEX OR RIDGE DETAIL

stitch bolt

eaves closure piece

eaves filler piece

stitch bolt

15

hook bolt

purlin

insulation

fascia

sheeting rail

flashing piece

wall sheeting

EAVES DETAIL USING CLOSURE PIECE

EAVES DETAIL USING FILLER PIECE
Double Skin, Energy Roof systems ~ apply to industrial and commercial use buildings. In addition to new projects constructed to current thermal insulation standards, these systems can be specified to upgrade existing sheet profiled roofs with superimposed supplementary insulation and protective decking. Thermal performance with resin bonded mineral wool fibre of up to 250mm overall depth may provide 'U' values as low as 0.13 W/m²K.

Typical Details ~

Alternative ~
Long Span Roofs ~ these can be defined as those exceeding 12,000 in span. They can be fabricated in steel, aluminium alloy, timber, reinforced concrete and prestressed concrete. Long span roofs can be used for buildings such as factories. Large public halls and gymnasiums which require a large floor area free of roof support columns. The primary roof functions of providing weather protection, thermal insulation, sound insulation and restricting spread of fire over the roof surface are common to all roof types but these roofs may also have to provide strength sufficient to carry services lifting equipment and provide for natural daylight to the interior by means of rooflights.

Basic Roof Forms ~

Pitched Trusses - spaced at suitable centres to carry purlins to which the roof coverings are fixed. Good rainwater run off - reasonable daylight spread from rooflights - high roof volume due to the triangulated format - on long spans roof volume can be reduced by using a series of short span trusses.

Northlight - spaced at suitable centres to carry purlins to which roof sheeting is fixed. Good rainwater run off - if correctly orientated solar glare is eliminated - long spans can be covered by a series of short span frames.

Flat Top Girders - spaced at suitable centres to carry purlins to which the roof coverings are fixed. Low pitch to give acceptable rainwater run off - reasonable daylight spread from rooflights - can be designed for very long spans but depth and hence roof volume increases with span.

Monitor - girders or cranked beams at centres to suit low pitch decking used. Good even daylight spread from monitor lights which is not affected by orientation of building.
Pitched Trusses ~ these can be constructed with a symmetrical outline (as shown on pages 473 to 474) or with an asymmetrical outline (Northlight — see detail below). They are usually made from standard steel sections with shop welded or bolted connections, alternatively they can be fabricated using timber members joined together with bolts and timber connectors or formed as a precast concrete portal frame.

Typical Multi-span Northlight Roof Details ~
Monitor Roofs - these are basically a flat roof with raised glazed portions called monitors which forms a roof having a uniform distribution of daylight with no solar glare problems irrespective of orientation and a roof with easy access for maintenance. These roofs can be constructed with light long span girders supporting the monitor frames, cranked welded beams following the profile of the roof or they can be of a precast concrete portal frame format.

Typical Monitor Roof Details -

- Code 4 lead flashing
- Patent glazing
- Roof decking and coverings as for monitor light roof
- Rainwater gutter
- Metal trim and closure
- 12mm thick layer of stone chippings on 3 layers of built-up roofing felt
- Thermal insulation board
- VCL
- Metal decking
- Closure piece
- Code 4 lead flashing
- Patent glazing
- Welded steel monitor frame fixed to top chords of girder
- Top chord of girder out of 2 No. mild steel angles
- Metal closure piece
- Perimeter support columns at 4.500 %
- Lattice girders spanning 15.000 at 4.500 %
- Struts and ties out of tee section bar
Flat Top Girders ~ these are suitable for roof spans ranging from 15,000 to 45,000 and are basically low pitched lattice beams used to carry purlins which support the roof coverings. One of the main advantages of this form of roof is the reduction in roof volume. The usual materials employed in the fabrication of flat top girders are timber and steel.

Typical Flat Top Girder Details ~

2 No. 250 x 75 top chords 75 mm apart
225 x 75 purlins
corrugated or troughed roof sheeting

2 No. 250 x 75 bottom chords 75 mm apart
Support column

Span - 20.000; Spacing - 3.000 %
Pitch - 5°; Material - M75 graded softwood

SECTION A-A
Connections ~ nails, screws and bolts have their limitations when used to join structural timber members. The low efficiency of joints made with a rigid bar such as a bolt is caused by the usual low shear strength of timber parallel to the grain and the non-uniform distribution of bearing stress along the shank of the bolt —

Timber Connectors ~ these are designed to overcome the problems of structural timber connections outlined above by increasing the effective bearing area of the bolts.

Toothed Plate Connector — provides an efficient joint without special tools or equipment — suitable for all connections especially small sections — bolt holes are drilled 2 mm larger than the bolt diameter, the timbers forming the joint being held together whilst being drilled.

Split Ring Connector — very efficient and develops a high joint strength — suitable for all connections — split ring connectors are inserted into a precut groove formed with a special tool making the connector independent from the bolt.

Shear Plate Connector — counterpart of a split ring connector — housed flush into timber — used for temporary joints.
Space Deck ~ this is a structural roofing system based on a simple repetitive pyramidal unit to give large clear spans of up to 22,000 for single spanning designs and up to 33,000 for two way spanning designs. The steel units are easily transported to site before assembly into beams and the complete space deck at ground level before being hoisted into position on top of the perimeter supports. A roof covering of wood wool slabs with built-up roofing felt could be used, although any suitable structural lightweight decking is appropriate. Rooflights can be mounted directly onto the square top space deck units.

Typical Details ~
Space Frames ~ these are roofing systems which consist of a series of connectors which joins together the chords and bracing members of the system. Single or double layer grids are possible, the former usually employed in connection with small domes or curved roofs. Space frames are similar in concept to space decks but they have greater flexibility in design and layout possibilities. Most space frames are fabricated from structural steel tubes or tubes of aluminium alloy although any suitable structural material could be used.

Typical Examples ~
Shell Roofs ~ these can be defined as a structural curved skin covering a given plan shape and area where the forces in the shell or membrane are compressive and in the restraining edge beams are tensile. The usual materials employed in shell roof construction are in situ reinforced concrete and timber. Concrete shell roofs are constructed over formwork which in itself is very often a shell roof making this format expensive since the principle of use and reuse of formwork can not normally be applied. The main factors of shell roofs are:–

1. The entire roof is primarily a structural element.
2. Basic strength of any particular shell is inherent in its geometrical shape and form.
3. Comparatively less material is required for shell roofs than other forms of roof construction.

Domes ~ these are double curvature shells which can be rotationally formed by any curved geometrical plane figure rotating about a central vertical axis. Translation domes are formed by a curved line moving over another curved line whereas pendentive domes are formed by inscribing within the base circle a regular polygon and vertical planes through the true hemispherical dome.

Typical Examples ~

![Diagram of Shell Roof Construction](image)

ROTATIONAL DOME

PENDENTIVE DOME

TRANSLATIONAL DOME
Barrel Vaults ~ these are single curvature shells which are essentially a cut cylinder which must be restrained at both ends to overcome the tendency to flatten. A barrel vault acts as a beam whose span is equal to the length of the roof. Long span barrel vaults are those whose span is longer than its width or chord length and conversely short barrel vaults are those whose span is shorter than its width or chord length. In every long span barrel vaults thermal expansion joints will be required at 30,000 centres which will create a series of abutting barrel vault roofs weather sealed together (see next page).

Typical Single Barrel Vault Principles ~

![Diagram of barrel vault principles]

- **Tension zone** - requires extra trajectory reinforcement
- **Barrel vault roof**
- **Diaphragm in end**
- **Overall rise**
- **Span**
- **Width or chord length**
- **Support columns**
- **Upstand edge beam**
- **Resisting thrust from shell and forming gutter**

Economic design ratios -
- **Width**: span 1:2 to 1:5
- **Rise**: span 1:10 to 1:15
Typical Barrel Vault Expansion Joint Details ~

capping clips fixed to hardwood batten at required centres

40 x 25 h/w batten

100 mm high kerb

25 mm wide expansion joint

stiffening arch rib or diaphragm

compressible gap filling material

mastic or sealant

abutting barrel vault roofs

abutting barrel vault support columns

compressible gap filling material

Stiffening Beams - short barrel vaults often have large chords of over 12,000. In such cases stiffening beams should be placed at 3,000 to 6,000 centres to prevent buckling.

NB. ribs not connected to support columns will set up extra stresses within the shell roof therefore extra reinforcement will be required at the stiffening rib or beam positions.
Other Forms of Barrel Vault ~ by cutting intersecting and placing at different levels the basic barrel vault roof can be formed into a groin or northlight barrel vault roof :-

INTERSECTING BARREL VAULTS

STEPPED BARREL VAULTS

Conoids ~ these are double curvative shell roofs which can be considered as an alternative to barrel vaults. Spans up to 12,000 with chord lengths up to 24,000 are possible. Typical chord to span ratio 2:1.
Hyperbolic Paraboloids — the true hyperbolic paraboloid shell roof shape is generated by moving a vertical parabola (the generator) over another vertical parabola (the directrix) set at right angles to the moving parabola. This forms a saddle shape where horizontal sections taken through the roof are hyperbolic in format and vertical sections are parabolic. The resultant shape is not very suitable for roofing purposes therefore only part of the saddle shape is used and this is formed by joining the centre points thus :-

To obtain a more practical shape than the true saddle a straight line limited hyperbolic paraboloid is used. This is formed by raising or lowering one or more corners of a square forming a warped parallelogram thus :-

For further examples see next page.
Shell Roof Construction

Typical Straight Line Limited Hyperbolic Paraboloid Formats ~

- Corner C raised to E
- Resultant hyperbolic paraboloid
- Original square
- Corner A lowered to E and corner C raised to F so that AE ≠ CF
- Corner A lowered to E and corner C raised to F so that AE ≠ CF
- Corners A & C raised to E & G
- Corners B & D lowered to F & H so that AE = CG & BF = DH
- Combination of Hyperbolic Paraboloid Shell Roofs ~
 - One corner raised
 - Two opposite corners raised
- NB. any combination possible
Concrete Hyperbolic Paraboloid Shell Roofs ~ these can be constructed in reinforced concrete (characteristic strength 25 or 30 N/mm²) with a minimum shell thickness of 50mm with diagonal spans up to 35 000. These shells are cast over a timber form in the shape of the required hyperbolic paraboloid format. In practice therefore two roofs are constructed and it is one of the reasons for the popularity of timber versions of this form of shell roof.

Timber Hyperbolic Paraboloid Shell Roofs ~ these are usually constructed using laminated edge beams and layers of t & g boarding to form the shell membrane. For roofs with a plan size of up to 6 000 × 6 000 only 2 layers of boards are required and these are laid parallel to the diagonals with both layers running in opposite directions. Roofs with a plan size of over 6 000 × 6 000 require 3 layers of board as shown below. The weather protective cover can be of any suitable flexible material such as built-up roofing felt, copper and lead. During construction the relatively lightweight roof is tied down to a framework of scaffolding until the anchorages and wall infilling have been completed. This is to overcome any negative and positive wind pressures due to the open sides.

Typical Details ~
Support Considerations - in timber hyperbolic paraboloid shell roofs only two supports are required -

Edge beams are in compression forces P are transmitted to B and D resulting in a vertical force V and a horizontal force H at both positions therefore support columns are required at B and D.

Vertical force V is transmitted directly down the columns to a suitable foundation. The outward or horizontal force H can be accommodated in one of two ways -

If shell roof is to be supported at high corners the edge beams will be in tension and horizontal force will be inwards. This can be resisted by a diagonal strut between the high corners.

Combination Roof Support Example -
4 No. roof shells of equal loading joined together

Supports required at A; C; G and E. with ties between AC; CE; EG and GA. Forces at J cancel each other therefore no support required at J.
Rooflights — the useful penetration of daylight through the windows in external walls of buildings is from 6.000 to 9.000 depending on the height and size of the window. In buildings with spans over 18.000 side wall daylighting needs to be supplemented by artificial lighting or in the case of top floors or single storey buildings by rooflights. The total maximum area of wall window openings and rooflights for the various purpose groups is set out in the Building Regulations with allowances for increased areas if double or triple glazing is used. In pitched roofs such as northlight and monitor roofs the rooflights are usually in the form of patent glazing (see Long Span Roofs on pages 480 and 481). In flat roof construction natural daylighting can be provided by one or more of the following methods:–

1. Lantern lights — see page 496.
2. Lens lights — see page 496.
3. Dome, pyramid and similar rooflights — see page 497.

Patent Glazing — these are systems of steel or aluminium alloy glazing bars which span the distance to be glazed whilst giving continuous edge support to the glass. They can be used in the roof forms noted above as well as in pitched roofs with profiled coverings where the patent glazing bars are fixed above and below the profiled sheets — see page 495.

Typical Patent Glazing Bar Sections —
Typical Pitched Roof Patent Glazing Details ~

eaves closure piece
lead flashing dressed over glazing bars
patent glazing bars at 600 %
single or double glazing
profiled roof sheeting
bolt and clip
insulation
purlin
cleat
roof truss
shelf angle bearer and fixing shoe
TOP CONNECTION
patent glazing bar
fixing shoe and draught excluder
shelf angle bearer
steel batten strip
cleat
purlin
roof truss
profiled roof sheeting and insulation
BOTTOM CONNECTION
Lantern Lights ~ these are a form of rooflight used in conjunction with flat roofs. They consist of glazed vertical sides and fully glazed pitched roof which is usually hipped at both ends. Part of the glazed upstand sides is usually formed as an opening light or alternatively glazed with louvres to provide a degree of controllable ventilation. They can be constructed of timber, metal or a combination of these two materials. Lantern lights in the context of new buildings have been generally superseded by the various forms of dome light (see next page)

Typical Lantern Light Details ~

Lens Lights ~ these are small square or round blocks of translucent toughened glass especially designed for casting into concrete and are suitable for use in flat roofs and curved roofs such as barrel vaults. They can also be incorporated in precast concrete frames for inclusion into a cast insitu roof.

Typical Detail ~
Dome, Pyramid and Similar Rooflights — these are used in conjunction with flat roofs and may be framed or unframed. The glazing can be of glass or plastics such as polycarbonate, acrylic, PVC and glass fibre reinforced polyester resin (grp). The whole component is fixed to a kerb and may have a raising piece containing hit and miss ventilators, louvres or flaps for controllable ventilation purposes.

Typical Details —

![Diagram showing details of dome and pyramid rooflights, including fixing clips, kerb, and various ventilation options.](image-url)
Claddings to External Walls - external walls of block or timber frame construction can be clad with tiles, timber boards or plastic board sections. The tiles used are plain roofing tiles with either a straight or patterned bottom edge. They are applied to the vertical surface in the same manner as tiles laid on a sloping surface (see pages 445 to 446) except that the gauge can be wider and each tile is twice nailed. External and internal angles can be formed using special tiles or they can be mitred. Timber boards such as matchboarding and shiplap can be fixed vertically to horizontal battens or horizontally to vertical battens. Plastic moulded board claddings can be applied in a similar manner. The battens to which the claddings are fixed should be treated with a preservative against fungi and beetle attack and should be fixed with corrosion resistant resistant nails.

Typical Details -
Non-load Bearing Brick Panel Walls — these are used in conjunction with framed structures as an infill between the beams and columns. They are constructed in the same manner as ordinary brick walls with the openings being formed by traditional methods.

Basic Requirements —

1. To be adequately supported by and tied to the structural frame.
2. Have sufficient strength to support own self weight plus any attached finishes and imposed loads such as wind pressures.
3. Provide the necessary resistance to penetration by the natural elements.
4. Provide the required degree of thermal insulation, sound insulation and fire resistance.
5. Have sufficient durability to reduce maintenance costs to a minimum.
6. Provide for movements due to moisture and thermal expansion of the panel and for contraction of the frame.

Typical Details —

![Diagram showing typical details of non-load bearing brick panel walls.]
Application – multi-storey buildings, where a traditional brick facade is required.

Brickwork movement – to allow for climatic changes and differential movement between the cladding and main structure, a 'soft' joint (cellular polyethylene, cellular polyurethane, expanded rubber or sponge rubber with polysulphide or silicon pointing) should be located below the support angle. Vertical movement joints may also be required at a maximum of 12m spacing.

Lateral restraint – provided by normal wall ties between inner and outer leaf of masonry, plus sliding brick anchors below the support angle.
Infill Panel Walls - these can be used between the framing members of a building to provide the cladding and division between the internal and external environments and are distinct from claddings and facing:

Functional Requirements - all forms of infill panel should be designed and constructed to fulfil the following functional requirements:

1. Self supporting between structural framing members.
2. Provide resistance to the penetration of the elements.
3. Provide resistance to positive and negative wind pressures.
4. Give the required degree of thermal insulation.
5. Give the required degree of sound insulation.
6. Give the required degree of fire resistance.
7. Have sufficient openings to provide the required amount of natural ventilation.
8. Have sufficient glazed area to fulfil the natural daylight and vision out requirements.
Brick infill Panels ~ these can be constructed in a solid or cavity format the latter usually having an inner skin of blockwork to increase the thermal insulation properties of the panel. All the fundamental construction processes and detail of solid and cavity walls (bonding, lintels over openings, wall ties, damp-proof courses etc...) apply equally to infill panel walls. The infill panel walls can be tied to the columns by means of wall ties cast into the columns at 300mm centres or located in cast-in dovetail anchor slots. The head of every infill panel should have a compressible joint to allow for any differential movements between the frame and panel.

Typical Details
Lightweight Infill Panels ~ these can be constructed from a wide variety or combination of materials such as timber, metals and plastics into which single or double glazing can be fitted. If solid panels are to be used below a transom they are usually of a composite or sandwich construction to provide the required sound insulation, thermal insulation and fire resistance properties.

Typical Example ~
Lightweight Infill Panels - these can be fixed between the structural horizontal and vertical members of the frame or fixed to the face of either the columns or beams to give a grid, horizontal or vertical emphasis to the façade thus —
Overcladding ~ a superficial treatment, applied either as a component of new construction work, or as a façade and insulation enhancement to existing structures. The outer weather resistant decorative panelling is ‘loose fit’ in concept, which is easily replaced to suit changing tastes, new materials and company image. Panels attach to the main structure with a grid of simple metal framing or vertical timber battens. This allows space for a ventilated and drained cavity, with provision for insulation to be attached to the substructure; a normal requirement in upgrade/refurbishment work.

Note: Cladding materials include, plastic laminates, fibre cement, ceramics, aluminium, enamelled steel and various stone effects.
Glazed facades have been associated with hi-tech architecture since the 1970s. The increasing use of this type of cladding is largely due to developments in toughened glass and improved qualities of elastomeric silicone sealants. The properties of the latter must incorporate a resilience to varying atmospheric conditions as well as the facility to absorb structural movement without loss of adhesion.

Systems – two edge and four edge.

The two edge system relies on conventional glazing beads/fixings to the head and sill parts of a frame, with sides silicone bonded to mullions and styles.

The four edge system relies entirely on structural adhesion, using silicone bonding between glazing and support frame – see details.

Structural glazing, as shown on this and the next page, is in principle a type of curtain walling. Due to its unique appearance, it is usual to consider full glazing of the building facade as a separate design and construction concept. BS EN 13830: Curtain walling. Product standard: defines curtain walling as an external vertical building enclosure produced by elements mainly of metal, timber or plastic. Glass as a primary material is excluded.
Structural glazing is otherwise known as frameless glazing. It is a system of toughened glass cladding without the visual impact of surface fixings and supporting components. Unlike curtain walling, the self-weight of the glass and wind loads are carried by the glass itself and transferred to a subsidiary lightweight support structure behind the glazing.

Assembly principles ~

- countersunk screw fixings
- silicon seal
- double glazed panel in storey heights
- st/st screw
- spacer
- toughened glass
- fibre washers
- plastic spacer
- back nut
- double glazed unit of tinted and toughened glass
- sub-structural support frame
- stainless steel angle bracket

ELEVATION

ASSEMBLY DETAIL

FIXING DETAIL
Curtain Walling:

Curtain Walling ~ this is a form of lightweight non-load bearing external cladding which forms a complete envelope or sheath around the structural frame. In low rise structures the curtain wall framing could be of timber or patent glazing but in the usual high rise context, box or solid members of steel or aluminium alloy are normally employed.

Basic Requirements for Curtain Walls ~

1. Provide the necessary resistance to penetration by the elements.
2. Have sufficient strength to carry own self weight and provide resistance to both positive and negative wind pressures.
3. Provide required degree of fire resistance — glazed areas are classified in the Building Regulations as unprotected areas therefore any required fire resistance must be obtained from the infill or undersill panels and any backing wall or beam.
4. Be easy to assemble, fix and maintain.
5. Provide the required degree of sound and thermal insulation.
6. Provide for thermal and structural movements.

Typical Curtain Walling Arrangement ~
Typical Curtain Walling Details

Principals ~

extruded plastic cover plate and screws

neoprene gaskets

estruded aluminium alloy box mullion

double glazed fixed light

estruded aluminium alloy box transom

transom located on spigot fixed to box mullion - connection to be mastic sealed

mullion bolted to angle brackets through slotted holes - angle brackets secured to floor edge with bolts located in dovetail anchor slots to provide for thermal and/or structural movement

infill or undersill panel
Fixing Curtain Walling to the Structure ~ in curtain walling systems it is the main vertical component or mullion which carries the loads and transfers them to the structural frame at every or alternate floor levels depending on the spanning ability of the mullion. At each fixing point the load must be transferred and an allowance made for thermal expansion and differential movement between the structural frame and curtain walling. The usual method employed is slotted bolt fixings.
Re-cladding existing framed buildings has become an economical alternative to complete demolition and re-building. This may be justified when a building has a change of use or it is in need of an image upgrade. Current energy conservation measures can also be achieved by the re-dressing of older buildings.

Typical section through an existing structural floor slab with a replacement system attached ~

Framing detail

double glazed unit, outer pane tinted solar control glass

synthetic rubber gasket

extruded silicon sealing strip

hollow extruded polyester powder coated aluminium transom or mullion

raised floor

skirting

transom (see detail)
mullion

existing r.c. floor slab

fire resisting silicon seal and neoprene isolating strip

mineral wool cavity barrier in support tray

mild steel fixing angles as framing support

bolts in expansion anchors

floor slab closer

suspended ceiling

VERTICAL SECTION
Loadbearing Concrete Panels — this form of construction uses storey height loadbearing precast reinforced concrete perimeter panels. The width and depth of the panels is governed by the load(s) to be carried, the height and exposure of the building. Panels can be plain or fenestrated providing the latter leaves sufficient concrete to transmit the load(s) around the opening. The cladding panels, being structural, eliminate the need for perimeter columns and beams and provide an internal surface ready to receive insulation, attached services and decorations. In the context of design these structures must be formed in such a manner that should a single member be removed by an internal explosion, wind pressure or similar force progressive or structural collapse will not occur, the minimum requirements being set out in Part A of the Building Regulations. Loadbearing concrete panel construction can be a cost effective method of building.

Typical Details ~

![Diagram of loadbearing concrete panels](image)

- projecting 'U' bars at 600 %
- drained joint
- upper loadbearing panel
- vertical link bar
- insitu concrete filling
- floor units
- horizontal joint
- U bar slot
- tie steel
- horizontal link bar
- levelling bolts at ends of panel
- projecting 'U' bars at 600 %
- lower loadbearing panel
Concrete Cladding Panels ~ these are usually of reinforced precast concrete to an undersill or storey height format, the former being sometimes called apron panels. All precast concrete cladding panels should be designed and installed to fulfil the following functions:-

1. Self supporting between framing members.
2. Provide resistance to penetration by the natural elements.
3. Resist both positive and negative wind pressures.
4. Provide required degree of fire resistance.
5. Provide required degree of thermal insulation by having the insulating material incorporated within the body of the cladding or alternatively allow the cladding to act as the outer leaf of cavity wall panel.
6. Provide required degree of sound insulation.

Undersill or Apron Cladding Panels ~ these are designed to span from column to column and provide a seating for the windows located above. Levelling is usually carried out by wedging and packing from the lower edge before being fixed with grouted dowels.

Typical Details:

- window seating
- fixing bolt
- inner wall
- inner wall
- dowel
- packing
- RC edge beam and floor slab

PLAN ON COLUMN CONNECTION

VERTICAL SECTION
Storey Height Cladding Panels—these are designed to span vertically from beam to beam and can be fenestrated if required. Levelling is usually carried out by wedging and packing from floor level before being fixed by bolts or grouted dowels.

Typical Details —
Concrete Surface Finishes ~ it is not easy to produce a concrete surface with a smooth finish of uniform colour direct from the mould or formwork since the colour of the concrete can be affected by the cement and fine aggregate used. The concrete surface texture can be affected by the aggregate grading, cement content, water content, degree of compaction, pin holes caused by entrapped air and rough patches caused by adhesion to parts of the formworks. Complete control over the above mentioned causes is difficult under ideal factory conditions and almost impossible under normal site conditions. The use of textured and applied finishes has therefore the primary function of improving the appearance of the concrete surface and in some cases it will help to restrict the amount of water which reaches a vertical joint.

Casting ~ concrete components can usually be cast insitu or precast in moulds. Obtaining a surface finish to concrete cast insitu is usually carried out against a vertical face, whereas precast concrete components can be cast horizontally and treated on either upper or lower mould face. Apart from a plain surface concrete the other main options are:–

1. Textured and profiled surfaces.
2. Tooled finishes.
3. Cast-on finishes. (see next page)
4. Exposed aggregate finishes. (see next page)

Textured and Profiled Surfaces ~ these can be produced on the upper surface of a horizontal casting by rolling, tamping, brushing and sawing techniques but variations in colour are difficult to avoid. Textured and profiled surfaces can be produced on the lower face of a horizontal casting by using suitable mould linings.

Tooled Finishes ~ the surface of hardened concrete can be tooled by bush hammering, point tooling and grinding. Bush hammering and point tooling can be carried out by using an electric or pneumatic hammer on concrete which is at least three weeks old provided gravel aggregates have not been used since these tend to shatter leaving surface pits. Tooling up to the arris could cause spalling therefore a 10mm wide edge margin should be left untooled. Grinding the hardened concrete consists of smoothing the surface with a rotary carborundum disc which may have an integral water feed. Grinding is a suitable treatment for concrete containing the softer aggregates such as limestone.
Concrete Surface Finishes

Cast-on Finishes ~ these finishes include split blocks, bricks, stone, tiles and mosaic. Cast-on finishes to the upper surface of a horizontal casting are not recommended although such finishes could be bedded onto the fresh concrete. Lower face treatment is by laying the materials with sealed or grouted joints onto the base of mould or alternatively the materials to be cast-on may be located in a sand bed spread over the base of the mould.

Exposed Aggregate Finishes ~ attractive effects can be obtained by removing the skin of hardened cement paste or surface matrix, which forms on the surface of concrete, to expose the aggregate. The methods which can be employed differ with the casting position.

Horizontal Casting ~ treatment to the upper face can consist of spraying with water and brushing some two hours after casting, trowelling aggregate into the fresh concrete surface or by using the felt-float method. This method consists of trowelling 10mm of dry mix fine concrete onto the fresh concrete surface and using the felt pad to pick up the cement and fine particles from the surface leaving a clean exposed aggregate finish.

Treatment to the lower face can consist of applying a retarder to the base of the mould so that the partially set surface matrix can be removed by water and/or brushing as soon as the castings are removed from the moulds. When special face aggregates are used the sand bed method could be employed.

Vertical Casting ~ exposed aggregate finishes to the vertical faces can be obtained by tooling the hardened concrete or they can be cast-on by the aggregate transfer process. This consists of sticking the selected aggregate onto the rough side of pegboard sheets with a mixture of water soluble cellulose compounds and sand fillers. The cream like mixture is spread evenly over the surface of the pegboard to a depth of one third the aggregate size and the aggregate sprinkled or placed evenly over the surface before being lightly tamped into the adhesive. The prepared board is then set aside for 36 hours to set before being used as a liner to the formwork or mould. The liner is used in conjunction with a loose plywood or hardboard baffle placed against the face of the aggregate. The baffle board is removed as the concrete is being placed.
Thermal insulation of external elements of construction is measured in terms of thermal transmittance rate, otherwise known as the U-value. It is the amount of heat energy in watts transmitted through one square metre of construction for every one degree Kelvin between external and internal air temperature, i.e. W/m²K.

U-values are unlikely to be entirely accurate, due to:

* the varying effects of solar radiation, atmospheric dampness and prevailing winds.
* inconsistencies in construction, even with the best of supervision.
* ‘bridging’ where different structural components meet, e.g. dense mortar in lightweight blockwork.

Nevertheless, calculation of the U-value for a particular element of construction will provide guidance as to whether the structure is thermally acceptable. The Building Regulations, Approved Document L, Conservation of fuel and power, determines acceptable energy efficiency standards for modern buildings, with the objective of limiting the emission of carbon dioxide and other burnt gases into the atmosphere.

The U-value is calculated by taking the reciprocal of the summed thermal resistances (R) of the component parts of an element of construction:

\[U = \frac{1}{\sum R} = \text{W/m}^2\text{K} \]

R is expressed in m²K/W. The higher the value, the better a component’s insulation. Conversely, the lower the value of U, the better the insulative properties of the structure.

Building Regulations, Approved Document references:
L1A. Work in new dwellings.
L1B. Work in existing dwellings.
L2A. Work in new buildings other than dwellings.
L2B. Work in existing buildings other than dwellings.
Thermal resistances (R) are a combination of the different structural, surface and air space components which make up an element of construction. Typically:

$$U = \frac{1}{R_{so} + R_1 + R_2 + R_a + R_3 + R_4 \text{ etc.} + R_{si}(m^2K/W)}$$

Where:
- $R_{so} = $ Outside or external surface resistance.
- $R_1, R_2, \text{ etc.} = $ Thermal resistance of structural components.
- $R_a = $ Air space resistance, eg. wall cavity.
- $R_{si} = $ Internal surface resistance.

The thermal resistance of a structural component ($R_1, R_2, \text{ etc.}$) is calculated by dividing its thickness (L) by its thermal conductivity (λ), i.e.

$$R(m^2K/W) = \frac{L(m)}{\lambda(W/mK)}$$

eg. 1. A 102mm brick with a conductivity of 0.84 W/mK has a thermal resistance (R) of: $0.102 / 0.84 = 0.121 m^2K/W$.

eg. 2.

Note: the effect of mortar joints in the brickwork can be ignored, as both components have similar density and insulative properties.

$$U = \frac{1}{R_{so} + R_1 + R_2 + R_{si}}$$

$R_1 = 0.215 / 0.84 = 0.256$

$R_2 = 0.013 / 0.50 = 0.026$

$U = \frac{1}{0.055 + 0.256 + 0.026 + 0.123} = 2.17 W/m^2K$
Typical values in: m²K/W

Internal surface resistances (R_{si}):

Walls — 0.123
Floors or ceilings for upward heat flow — 0.104
Floors or ceilings for downward heat flow — 0.148
Roofs (flat or pitched) — 0.104

External surface resistances (R_{so}):

<table>
<thead>
<tr>
<th>Surface</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sheltered</td>
</tr>
<tr>
<td>Wall — high emissivity</td>
<td>0.080</td>
</tr>
<tr>
<td>Wall — low emissivity</td>
<td>0.110</td>
</tr>
<tr>
<td>Roof — high emissivity</td>
<td>0.070</td>
</tr>
<tr>
<td>Roof — low emissivity</td>
<td>0.090</td>
</tr>
<tr>
<td>Floor — high emissivity</td>
<td>0.070</td>
</tr>
</tbody>
</table>

Sheltered — town buildings to 3 storeys.
Normal — town buildings 4 to 8 storeys and most suburban premises.
Severe — > 9 storeys in towns.
> 5 storeys elsewhere and any buildings on exposed coasts and hills.

Air space resistances (R_{a}):

Pitched or flat roof space — 0.180
Behind vertical tile hanging — 0.120
Cavity wall void — 0.180
Between high and low emissivity surfaces — 0.300
Unventilated/sealed — 0.180

Emissivity relates to the heat transfer across and from surfaces by radiant heat emission and absorption effects. The amount will depend on the surface texture, the quantity and temperature of air movement across it, the surface position or orientation and the temperature of adjacent bodies or materials. High surface emissivity is appropriate for most building materials. An example of low emissivity would be bright aluminium foil on one or both sides of an air space.
Typical values —

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (kg/m3)</th>
<th>Conductivity (λ) (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WALLS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boarding (hardwood)</td>
<td>700</td>
<td>0.18</td>
</tr>
<tr>
<td>(softwood)</td>
<td>500</td>
<td>0.13</td>
</tr>
<tr>
<td>Brick outer leaf</td>
<td>1700</td>
<td>0.84</td>
</tr>
<tr>
<td>... inner leaf</td>
<td>1700</td>
<td>0.62</td>
</tr>
<tr>
<td>Calcium silicate board</td>
<td>875</td>
<td>0.17</td>
</tr>
<tr>
<td>Ceramic tiles</td>
<td>2300</td>
<td>1.30</td>
</tr>
<tr>
<td>Concrete</td>
<td>2400</td>
<td>1.93</td>
</tr>
<tr>
<td>(lightweight)</td>
<td>2200</td>
<td>1.59</td>
</tr>
<tr>
<td>(reinforced)</td>
<td>2000</td>
<td>1.33</td>
</tr>
<tr>
<td>(lightweight)</td>
<td>1800</td>
<td>1.13</td>
</tr>
<tr>
<td>(reinforced)</td>
<td>1200</td>
<td>0.38</td>
</tr>
<tr>
<td>Concrete block (lightweight)</td>
<td>2400</td>
<td>2.50</td>
</tr>
<tr>
<td>(mediumweight)</td>
<td>600</td>
<td>0.18</td>
</tr>
<tr>
<td>Cement mortar (protected)</td>
<td>1400</td>
<td>0.53</td>
</tr>
<tr>
<td>(exposed)</td>
<td>1750</td>
<td>0.88</td>
</tr>
<tr>
<td>Fibreboard</td>
<td>1750</td>
<td>0.94</td>
</tr>
<tr>
<td>(lightweight)</td>
<td>350</td>
<td>0.08</td>
</tr>
<tr>
<td>Gypsum plaster (dense)</td>
<td>600</td>
<td>0.57</td>
</tr>
<tr>
<td>Gypsum plaster (lightweight)</td>
<td>1900</td>
<td>0.16</td>
</tr>
<tr>
<td>Plasterboard</td>
<td>1300</td>
<td>0.16</td>
</tr>
<tr>
<td>Tile hanging</td>
<td>1300</td>
<td>0.84</td>
</tr>
<tr>
<td>Rendering</td>
<td>2600</td>
<td>2.30</td>
</tr>
<tr>
<td>Sandstone</td>
<td>2000</td>
<td>1.70</td>
</tr>
<tr>
<td>Wall ties (st/st)</td>
<td>7900</td>
<td>17.00</td>
</tr>
<tr>
<td>ROOFS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerated concrete slab</td>
<td>500</td>
<td>0.16</td>
</tr>
<tr>
<td>Asphalt</td>
<td>1900</td>
<td>0.60</td>
</tr>
<tr>
<td>Bituminous felt in 3 layers</td>
<td>1700</td>
<td>0.50</td>
</tr>
<tr>
<td>Sarking felt</td>
<td>1700</td>
<td>0.50</td>
</tr>
<tr>
<td>Stone chippings</td>
<td>1800</td>
<td>0.96</td>
</tr>
<tr>
<td>Tiles (clay)</td>
<td>2000</td>
<td>1.00</td>
</tr>
<tr>
<td>(concrete)</td>
<td>2100</td>
<td>1.50</td>
</tr>
<tr>
<td>Wood wool slab</td>
<td>500</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Typical values —

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (kg/m3)</th>
<th>Conductivity (λ) (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOORS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cast concrete</td>
<td>2000</td>
<td>1.33</td>
</tr>
<tr>
<td>Hardwood block/strip</td>
<td>700</td>
<td>0.18</td>
</tr>
<tr>
<td>Plywood/particle board</td>
<td>650</td>
<td>0.14</td>
</tr>
<tr>
<td>Screed</td>
<td>1200</td>
<td>0.41</td>
</tr>
<tr>
<td>Softwood board</td>
<td>500</td>
<td>0.13</td>
</tr>
<tr>
<td>Steel tray</td>
<td>7800</td>
<td>50.00</td>
</tr>
<tr>
<td>INSULATION:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expanded polystyrene board</td>
<td>20</td>
<td>0.035</td>
</tr>
<tr>
<td>Mineral wool batt/slub</td>
<td>25</td>
<td>0.038</td>
</tr>
<tr>
<td>Mineral wool quilt</td>
<td>12</td>
<td>0.042</td>
</tr>
<tr>
<td>Phenolic foam board</td>
<td>30</td>
<td>0.025</td>
</tr>
<tr>
<td>Polyurethane board</td>
<td>30</td>
<td>0.025</td>
</tr>
<tr>
<td>Urea formaldehyde foam</td>
<td>10</td>
<td>0.040</td>
</tr>
<tr>
<td>GROUND:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay/silt</td>
<td>1250</td>
<td>1.50</td>
</tr>
<tr>
<td>Sand/gravel</td>
<td>1500</td>
<td>2.00</td>
</tr>
<tr>
<td>Homogenous rock</td>
<td>3000</td>
<td>3.50</td>
</tr>
</tbody>
</table>

Notes:

1. For purposes of calculating U-values, the effect of mortar in external brickwork is usually ignored as the density and thermal properties of bricks and mortar are similar.

2. Where butterfly wall ties are used at normal spacing in an insulated cavity ≤ 75 mm, no adjustment is required to calculations. If vertical twist ties are used in insulated cavities > 75 mm, 0.020 W/m2K should be added to the U-value.

3. Thermal conductivity (λ) is a measure of the rate that heat is conducted through a material under specific conditions (W/mK).
Tables and charts — Insulation manufacturers’ design guides and technical papers (walls, roofs and ground floors).
* Calculation using the Proportional Area Method (walls and roofs).
* Calculation using the Combined Method — BS EN ISO 6946 (walls and roofs).
* Calculation using BS EN ISO 13370 (ground floors and basements).

Tables and charts — these apply where specific U-values are required and standard forms of construction are adopted. The values contain appropriate allowances for variable heat transfer due to different components in the construction, e.g. twisted pattern wall-ties and non-uniformity of insulation with the interruption by ceiling joists. The example below shows the tabulated data for a solid ground floor with embedded insulation of $\lambda = 0.03$ W/mK

![Solid concrete ground floor](image)

Perimeter (P) = 18 m
Floor area (A) = 20 m²
$P/A = 0.9$
$\lambda = 0.03$ W/mK

Table shows values for $U = 0.25$ W/m²K

Typical table for floor insulation:

<table>
<thead>
<tr>
<th>P/A</th>
<th>0.020</th>
<th>0.025</th>
<th>0.030*</th>
<th>0.035</th>
<th>0.040</th>
<th>0.045</th>
<th>W/mK</th>
<th>mm ins.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>61</td>
<td>76</td>
<td>91</td>
<td>107</td>
<td>122</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9*</td>
<td>60</td>
<td>75</td>
<td>90</td>
<td>105</td>
<td>120</td>
<td>135</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>0.8</td>
<td>58</td>
<td>73</td>
<td>88</td>
<td>102</td>
<td>117</td>
<td>132</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>0.7</td>
<td>57</td>
<td>71</td>
<td>85</td>
<td>99</td>
<td>113</td>
<td>128</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>0.6</td>
<td>54</td>
<td>68</td>
<td>82</td>
<td>95</td>
<td>109</td>
<td>122</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>0.5</td>
<td>51</td>
<td>64</td>
<td>77</td>
<td>90</td>
<td>103</td>
<td>115</td>
<td>..</td>
<td>..</td>
</tr>
</tbody>
</table>

90mm of insulation required.

Various applications to different ground floor situations are considered in BS EN ISO 13370. The following is an example for a solid concrete slab in direct contact with the ground. The data used is from the previous page.

Floor section

| Perimeter | 18 m (exposed) |
| Floor area | 20 m² |

λ for 90 mm insulation = 0.03 W/mK

Characteristic floor dimension = B¹

B¹ = Floor area ÷ (1/2 exp. perimeter)

B¹ = 20 ÷ 9 = 2.222 m

Formula to calculate total equivalent floor thickness for uninsulated and insulated all over floor:

\[
dt = w + \lambda (R_{si} + R_{f} + R_{so})
\]

where:
- \(dt \) = total equivalent floor thickness (m)
- \(w \) = wall thickness (m)
- \(\lambda \) = thermal conductivity of soil (W/mK) [see page 521]
- \(R_{si} \) = internal surface resistance (m²K/W) [see page 519]
- \(R_{f} \) = insulation resistance (0.09 ÷ 0.03 = 3 m²K/W)
- \(R_{so} \) = external surface resistance (m²K/W) [see page 519]

Uninsulated:

\[
dt = 0.3 + 1.5 (0.148 + 0 + 0.04) = 0.582 \text{ m}
\]

Insulated:

\[
dt = 0.3 + 1.5 (0.148 + 3 + 0.04) = 5.082 \text{ m}
\]

Formulae to calculate U-values —

Uninsulated or poorly insulated floor, \(dt < B¹ \):

\[
U = (2\lambda ÷ [\pi B¹ + dt]) \times \ln [(\pi B¹ ÷ dt) + 1]
\]

Well insulated floor, \(dt \geq B¹ \):

\[
U = \lambda ÷ [(0.457 × B¹) + dt]
\]

where:
- \(U \) = thermal transmittance coefficient (W/m²/K)
- \(\lambda \) = thermal conductivity of soil (W/mK)
- \(B¹ \) = characteristic floor dimension (m)
- \(dt \) = total equivalent floor thickness (m)
- \(\ln \) = natural logarithm

Uninsulated floor —

\[
U = (2 × 1.5) ÷ [(3.142 × 2.222) ÷ 0.582] \times \ln [(3.142 × 2.222 ÷ 0.582 + 1]
U = 0.397 × \ln 12.996 = 1.02 \text{ W/m}²\text{K}
\]

Insulated floor —

\[
U = 15 ÷ [(0.457 × 2.222) + 5.082] = 15 ÷ 6.097 = 0.246 \text{ W/m}²\text{K}
\]

Compares with the tabulated figure of 0.250 W/m²K on the previous page.
Proportional Area Method (Wall)

- **unbrided (see notes pg 521)**
- **bridged**
- 13 mm lightweight plaster, \(\lambda = 0.16, R = 0.081 \)
- 102.5 mm brickwork, \(\lambda = 0.84, R = 0.122 \)
- 100 mm mineral wool insulation, \(\lambda = 0.038, \ R = 2.631 \)
- 100 mm aerated concrete blocks, \(\lambda = 0.18, R = 0.555 \)
- 10 mm deep mortar, \(\lambda = 0.88, R = 0.114 \)

Fully insulated cavity wall

A standard block with mortar is \(450 \times 225 \text{mm} = 101250 \text{mm}^2 \)

A standard block format of \(440 \times 215 \text{mm} = 94600 \text{mm}^2 \)

The area of mortar per block = \(6650 \text{mm}^2 \)

Proportional area of mortar = \(\frac{6650}{101250} \times 100 = 6.57\% \times (0.066) \)

Therefore the proportional area of blocks = \(93.43\% \times (0.934) \)

Thermal resistances (R):

<table>
<thead>
<tr>
<th>Outer leaf + insulation (unbrided)</th>
<th>Inner leaf (unbrided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{so}) brickwork = 0.122</td>
<td>(R_{si}) blocks = 0.555</td>
</tr>
<tr>
<td>insulation = 2.631</td>
<td>plaster = 0.081</td>
</tr>
<tr>
<td></td>
<td>(R_{si}) = 0.123</td>
</tr>
<tr>
<td></td>
<td>(= 0.759)</td>
</tr>
<tr>
<td></td>
<td>(\times 100% = 2.808)</td>
</tr>
</tbody>
</table>

Inner leaf (bridged)

- mortar = 0.114
- plaster = 0.081
- \(R_{si} \) = 0.123

\[\times 6.57\% = 0.021 \]

\[U = \frac{1}{\sum R} = \frac{1}{2.808 + 0.709 + 0.021} = 0.283 \text{W/m}^2\text{K} \]
Combined Method (Wall)

This method considers the upper and lower thermal resistance (R) limits of an element of structure. The average of these is reciprocated to provide the U-value.

Formula for upper and lower resistances = \[\frac{1}{\sum(F_x/R_x)} \]

Where: \(F_x \) = Fractional area of a section
\(R_x \) = Total thermal resistance of a section

Using the wall example from the previous page:

Upper limit of resistance (R) through section containing blocks —
\((R_{so}, 0.055) + (brkwk, 0.122) + (ins, 2.631) + (blocks, 0.555) + (plstr, 0.081) + (R_{si}, 0.123) = 3.567 \text{m}^2\text{K}/\text{W} \)

Fractional area of section (F) = 93.43% or 0.934

Upper limit of resistance (R) through section containing mortar —
\((R_{so}, 0.055) + (brkwk, 0.122) + (ins, 2.631) + (mortar, 0.114) + (plstr, 0.081) + (R_{si}, 0.123) = 3.126 \text{m}^2\text{K}/\text{W} \)

Fractional area of section (F) = 65.7% or 0.066

The upper limit of resistance =

\[\frac{1}{\sum(0.943/3.567) + (0.066/3.126)} = 3.533 \text{m}^2\text{K}/\text{W} \]

Lower limit of resistance (R) is obtained by summating the resistance of all the layers —
\((R_{so}, 0.055) + (brkwk, 0.122) + (ins, 2.631) + (bridged layer, 1/0.934/0.555) + (0.066/0.114) = 0.442 + (plstr, 0.081) + (R_{si}, 0.123) = 3.454 \text{m}^2\text{K}/\text{W} \)

Total resistance (R) of wall is the average of upper and lower limits = \((3.533 + 3.454)/2 = 3.493 \text{m}^2\text{K}/\text{W} \)

U-value = \[\frac{1}{R} = \frac{1}{3.493} = 0.286 \text{W/m}^2\text{K} \]

Note: Both proportional area and combined method calculations require an addition of 0.020 W/m²K to the calculated U-value. This is for vertical twist type wall ties in the wide cavity. See page 312 and note 2 on page 521.
Proportional Area Method (Roof)

Notes:
1. The air space in the loft area is divided between pitched and ceiling components, i.e. $R_a = 0.180/2 = 0.090 \text{m}^2 \text{K/W}$.
2. The U-value is calculated perpendicular to the insulation, therefore the pitched component resistance is adjusted by multiplying by the cosine of the pitch angle, i.e. 0.819.
3. Proportional area of bridging parts (rafters and joists) is $50/400 = 0.125$ or 12.5%.
4. With an air space resistance value (R_1) of $0.120 \text{m}^2 \text{K/W}$ between tiles and felt, the resistance of the tiling may be ignored.

Thermal resistance (R) of the pitched component:

<table>
<thead>
<tr>
<th>Rafted part</th>
<th>Non-rafted part</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{so} = 0.045$</td>
<td>$R_{so} = 0.045$</td>
</tr>
<tr>
<td>$R_1 = 0.120$</td>
<td>$R_1 = 0.120$</td>
</tr>
<tr>
<td>$R_2 = 0.004$</td>
<td>$R_2 = 0.004$</td>
</tr>
<tr>
<td>$R_3 = 0.714$</td>
<td>$R_a = 0.090$</td>
</tr>
<tr>
<td>$R_a = 0.090$</td>
<td>$0.259 \times 87.5% = 0.227$</td>
</tr>
</tbody>
</table>

Total resistance of pitched components =

$(0.122 + 0.227) \times 0.819 = 0.286 \text{m}^2 \text{K/W}$

Thermal resistance (R) of the ceiling component:

<table>
<thead>
<tr>
<th>Joisted part</th>
<th>Fully insulated part</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{si} = 0.104$</td>
<td>$R_{si} = 0.104$</td>
</tr>
<tr>
<td>$R_6 = 0.081$</td>
<td>$R_6 = 0.081$</td>
</tr>
<tr>
<td>$R_5 = 0.714$</td>
<td>$R_4 = 5.000 \text{ (200 mm)}$</td>
</tr>
<tr>
<td>$R_4 = 2.500 \text{ (100 mm)}$</td>
<td>$R_a = 0.090$</td>
</tr>
<tr>
<td>$R_a = 0.090$</td>
<td>$5.275 \times 87.5% = 4.615$</td>
</tr>
</tbody>
</table>

Total resistance of ceiling components = $0.436 + 4.615$

$= 5.051 \text{m}^2 \text{K/W}$

$U = \frac{1}{\sum R} = \frac{1}{0.286 + 5.051} = 0.187 \text{W/m}^2 \text{K}$
Standard Assessment Procedure ~ the Approved Document to Part L of the Building Regulations emphasises the importance of quantifying the energy costs of running new homes. For this purpose it uses the Government’s Standard Assessment Procedure (SAP). SAP has a numerical scale of 1 to 120. It takes into account the effectiveness of a building’s fabric relative to insulation and standard of construction. It also appraises the energy efficiency of fuel consuming installations such as ventilation, hot water, heating and lighting. Incidentals like solar gain also feature in the calculations.

As part of the Building Regulations approval procedure, energy rating (SAP) calculations are submitted to the local building control authority. SAP ratings are also required to provide prospective home purchasers or tenants with an indication of the expected fuel costs for hot water and heating. This information is documented and included with the property conveyance. The SAP calculation involves combining data from tables, work sheets and formulae. Guidance is found in Approved Document L, or by application of certified SAP computer software programmes.

As a guide, housing built to 1995 energy standards can be expected to have a SAP rating of around 80. That built to 2002 energy standards will have a SAP expectation of about 90. Current quality construction standards should rate dwellings in excess of 100.

Air Permeability ~ air tightness in the construction of dwellings is an important quality control objective. Compliance is achieved by attention to detail at construction interfaces, e.g. by silicon sealing built-in joists to blockwork inner leafs and door and window frames to masonry surrounds; draft proofing sashes, doors and loft hatches. Dwellings failing to comply with these measures are penalised in SAP calculations.

Compliance with the Building Regulations Part L Robust Details is an acceptable standard of construction. Alternatively, a certificate must be obtained to show pre-completion testing satisfying air permeability of less than 10 m³/h per m² envelope area at 50 Pascals (Pa or N/m²) pressure.

Ref. Limiting thermal bridging and air leakage: Robust construction details for dwellings and similar buildings. The Stationery Office.
Domestic buildings (England and Wales) ~

<table>
<thead>
<tr>
<th>Element of construction</th>
<th>Limiting area weighted ave. U-value (W/m²K)</th>
<th>Limiting individual component U-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>0.25</td>
<td>0.35</td>
</tr>
<tr>
<td>Wall</td>
<td>0.35</td>
<td>0.70</td>
</tr>
<tr>
<td>Floor</td>
<td>0.25</td>
<td>0.70</td>
</tr>
<tr>
<td>Windows, doors, rooflights and roof windows</td>
<td>2.20</td>
<td>3.30</td>
</tr>
</tbody>
</table>

The area weighted average U-value for an element of construction depends on the individual U-values of all components and the area they occupy within that element. E.g. The part of a wall with a meter cupboard built in will have less resistance to thermal transmittance than the rest of the wall (max. U-value at cupboard, 0.45).

<table>
<thead>
<tr>
<th>Element of construction</th>
<th>U-value targets (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitched roof (insulation between rafters)</td>
<td>0.15</td>
</tr>
<tr>
<td>Pitched roof (insulation between joists)</td>
<td>0.15</td>
</tr>
<tr>
<td>Flat roof</td>
<td>0.15</td>
</tr>
<tr>
<td>Wall</td>
<td>0.28</td>
</tr>
<tr>
<td>Floor</td>
<td>0.20</td>
</tr>
<tr>
<td>Windows, doors, rooflights and roof windows</td>
<td>1.80 (area weighted ave.)</td>
</tr>
</tbody>
</table>

Note: Maximum area of windows, doors, rooflights and roof windows, 25% of the total floor area.

An alternative to the area weighted average U-value for windows, etc., may be a window energy rating of not less than minus 30.

Energy source ~ gas or oil fired central heating boiler with a minimum SEDBUK efficiency rating of 86% (band rating A or B). There are transitional and exceptional circumstances that permit lower band rated boilers. Where this occurs, the construction of the building envelope should compensate with very low U-values.

SEDBUK = Seasonal Efficiency of a Domestic Boiler in the United Kingdom. SEDBUK values are defined in the Government’s Standard Assessment Procedure for Energy Rating of Dwellings. There is also a SEDBUK website, www.sedbuk.com.

Note: SEDBUK band A = > 90% efficiency
- band B = 86–90%
- band C = 82–86%
- band D = 78–82%
Further Quality Procedures (Structure) ~

* Provision of insulation to be continuous. Gaps are unacceptable and if allowed to occur will invalidate the insulation value by thermal bridging.

* Junctions at elements of construction (wall/floor, wall/roof) to receive particular attention with regard to continuity of insulation.

* Openings in walls for windows and doors to be adequately treated with insulating cavity closers.

Further Quality Procedures (Energy Consumption) ~

* Hot water and heating systems to be fully commissioned on completion and controls set with regard for comfort, health and economic use.

* As part of the commissioning process, the sealed heating system should be flushed out and filled with a proprietary additive diluted in accordance with the manufacturer's guidance. This is necessary to enhance system performance by resisting corrosion, scaling and freezing.

* A certificate confirming system commissioning and water treatment should be available for the dwelling occupant. This document should be accompanied with component manufacturer's operating and maintenance instructions.

Note: Commissioning of heating installations and the issue of certificates is by a qualified "competent person" as recognised by the appropriate body, i.e. CORGI, OFTEC or HETAS.

CORGI ~ Council for Registered Gas Installers.

OFTEC ~ Oil Firing Technical Association for the Petroleum Industry.

European Window Energy Rating Scheme (EWERS) ~ an alternative to U-values for measuring the thermal efficiency of windows. U-values form part of the assessment, in addition to factors for solar heat gain and air leakage. In the UK, testing and labelling of window manufacturer’s products is promoted by the British Fenestration Rating Council (BFRC). The scheme uses a computer to simulate energy movement over a year through a standard window of 1.480×1.230 m containing a central mullion and opening sash to one side.

Data is expressed on a scale from A–G in units of kWh/m2/year.

- **A**: > zero
- **B**: −10 to 0
- **C**: −20 to −10
- **D**: −30 to −20
- **E**: −50 to −30
- **F**: −70 to −50
- **G**: < −70

By formula, rating = \((218.6 \times g \text{ value}) - 68.5 \) (U-value + L value)

Where: g value = factor measuring effectiveness of solar heat block expressed between 0 and 1. For comparison:

- 0.48 (no curtains)
- 0.43 (curtains open)
- 0.17 (curtains closed)

U value = weighted average transmittance coefficient
L value = air leakage factor

From the label shown opposite:
Rating = \((218.6 \times 0.5) \)
− 68.5 (1.8 + 0.10)
= 109.3 − 130.15
= −20.85 i.e. −21

Typical format of a window energy rating label ~

ABC Joinery Ltd.
Window ref. XYZ 123

<table>
<thead>
<tr>
<th>Energy index</th>
<th>Climate zone</th>
<th>Thermal trans. (U value)</th>
<th>Solar factor (g value)</th>
<th>Air leakage (L value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.8 W/m2K</td>
<td>0.50</td>
<td>0.10 m3/h/m2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>at 50 Pa</td>
</tr>
</tbody>
</table>
The Government’s Standard Assessment Procedure (SAP) for energy rating dwellings includes a facility to calculate carbon dioxide (CO$_2$) emissions in kilograms or tonnes per year. The established carbon index method allows for adjustment to dwelling floor area to obtain a carbon factor (CF):

$$CF = \frac{CO_2}{\text{total floor area} + 45}$$

The carbon index (CI) = $17.7 - (9 \log_{10} CF)$

Note: log. = logarithm to the base 10.

e.g. A dwelling of total floor area 125m2, with CO$_2$ emissions of 2000 kg/yr.

$$CF = \frac{2000}{(125 + 45)} = 11.76$$

$$CI = 17.7 - (9 \log_{10} 11.76) = 8.06$$

The carbon index (CI) is expressed on a scale of 0 to 10. The higher the number the better. Every new dwelling should have a CI value of at least 8.

Approved Document L to the Building Regulations includes the Dwelling Carbon Emissions Rate (DER) as another means for assessing carbon discharge. The DER is compared by calculation to a Target Carbon Emissions Rate (TER), based on data for type of lighting, floor area, building shape and choice of fuel.

The DER is derived primarily by appraising the potential CO$_2$ emission from a dwelling relative to the consumption of fuel (directly or indirectly) in hot water, heating, lighting, cooling (if fitted), fans and pumps.

$$\text{DER} \leq \text{TER}$$

Buildings account for about half of the UK’s carbon emissions. Therefore, there are considerable possibilities for energy savings and reductions in atmospheric pollution.
In new buildings and those subject to alterations, the objective is to optimise the use of fuel and power to minimise emission of carbon dioxide and other burnt fuel gases into the atmosphere. This applies principally to the installation of hot water, heating, lighting, ventilation and air conditioning systems. Pipes, ducting, storage vessels and other energy consuming plant should be insulated to limit heat losses. The fabric or external envelope of a building is constructed with regard to limiting heat losses through the structure and to regulate solar gains.

Approved Document L2 of the Building Regulations is not prescriptive. It sets out a series of objectives relating to achievement of a satisfactory carbon emission standard. A number of other technical references and approvals are cross referenced in the Approved Document and these provide a significant degree of design flexibility in achieving the objectives.

Energy efficiency of buildings other than dwellings is determined by applying a series of procedures modelled on a notional building of the same size and shape as the proposed building. The performance standards used for the notional building are similar to the 2002 edition of Approved Document L2. Therefore the proposed or actual building must be seen to be a significant improvement in terms of reduced carbon emissions by calculation. Improvements can be achieved in a number of ways, including the following:

- Limit the area or number of rooflights, windows and other openings.
- Improve the U-values of the external envelope. The limiting values are shown on the next page.
- Improve the airtightness of the building from the poorest acceptable air permeability of 10 m3/hour/m2 of external envelope at 50 Pa pressure.
- Improve the heating system efficiency by installing thermostatic controls, zone controls, optimum time controls, etc. Fully insulate pipes and equipment.
- Use of high efficacy lighting fittings, automated controls, low voltage equipment, etc.
- Apply heat recovery systems to ventilation and air conditioning systems. Insulate ducting.
- Install a building energy management system to monitor and regulate use of heating and air conditioning plant.
- Limit overheating of the building with solar controls and appropriate glazing systems.
- Ensure that the quality of construction provides for continuity of insulation in the external envelope.
- Establish a commissioning and plant maintenance procedure. Provide a log-book to document all repairs, replacements and routine inspections.
<table>
<thead>
<tr>
<th>Element of construction</th>
<th>Limiting area weighted ave. U-value (W/m²K)</th>
<th>Limiting individual component U-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>0.25</td>
<td>0.35</td>
</tr>
<tr>
<td>Wall</td>
<td>0.35</td>
<td>0.45</td>
</tr>
<tr>
<td>Floor</td>
<td>0.25</td>
<td>0.45</td>
</tr>
<tr>
<td>Windows, doors rooflights and roof windows</td>
<td>2.20</td>
<td>3.30</td>
</tr>
<tr>
<td>Curtain wall (full façade)</td>
<td>1.60</td>
<td>2.50</td>
</tr>
<tr>
<td>Large and vehicle access doors</td>
<td>1.50</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Notes:
- For display windows separate consideration applies. See Section 5 in A.D., L2.
- The poorest acceptable thermal transmittance values provide some flexibility for design, allowing a trade off against other thermally beneficial features such as energy recovery systems.
- The minimum U-value standard is set with regard to minimise the risk of condensation.
- The concept of area weighted values is explained on page 528.
- Elements will normally be expected to have much better insulation than the limiting U-values. Suitable objectives or targets could be as shown for domestic buildings.

Further requirements for the building fabric:
- Insulation continuity: this requirement is for a fully insulated external envelope with no air gaps in the fabric. Vulnerable places are at junctions between elements of construction, e.g. wall to roof, and around openings such as door and window reveals. Conformity can be shown by producing evidence in the form of a report produced for the local authority building control department by an accredited surveyor. The report must indicate that:
 * the approved design specification and construction practice are to an acceptable standard of conformity, OR
 * a thermographic survey shows continuity of insulation over the external envelope. This is essential when it is impractical to fully inspect the work in progress.

Air tightness: requires that there is no air infiltration through gaps in construction and at the intersection of elements. Permeability of air is tested by using portable fans of capacity to suit the building volume. Smoke capsules in conjunction with air pressurisation will provide a visual indication of air leakage paths.
Thermal Insulation — this is required within the roof of all dwellings in the UK. It is necessary to create a comfortable internal environment, to reduce the risk of condensation and to economise in fuel consumption costs.

To satisfy these objectives, insulation may be placed between and over the ceiling joists as shown below to produce a cold roof void. Alternatively, the insulation can be located above the rafters as shown on page 448. Insulation above the rafters creates a warm roof void and space within the roof structure that may be useful for habitable accommodation.

Note: all pipework in roof space should be insulated to prevent frost attack. The sides and top of cold water storage cisterns should be insulated to prevent freezing.
Thermal insulation to Walls ~ the minimum performance standards for exposed walls set out in Approved Document L to meet the requirements of Part L of the Building Regulations can be achieved in several ways (see pages 524 and 525). The usual methods require careful specification, detail and construction of the wall fabric, insulating material(s) and/or applied finishes.

Typical Examples of existing construction that would require upgrading to satisfy contemporary UK standards ~

SOLID BLOCK WALL (U = 0.45 W/m²K)
- 250mm thick aerated concrete blocks - density 475 kg/m³
- 19 mm thick plasterboard with vapour control layer on 20 mm thick battens

CAVITY WALL WITH CAVITY INSULATING BATT(S) (U = 0.39 W/m²K)
- 50mm wide cavity
- 100mm thick lightweight concrete block inner leaf - density 600 kg/m³
- 13mm thick lightweight plaster

TRADITIONAL CAVITY WALL (U = 0.58 W/m²K)
- 50mm wide cavity
- 150mm thick lightweight concrete block inner leaf - density 475 kg/m³
- 13mm thick lightweight plaster
Thermal or Cold Bridging ~ this is heat loss and possible condensation, occurring mainly around window and door openings and at the junction between ground floor and wall. Other opportunities for thermal bridging occur where uniform construction is interrupted by unspecified components, e.g. occasional use of bricks and/or tile slips to make good gaps in thermal block inner leaf construction.

NB. This practice was quite common, but no longer acceptable by current legislative standards in the UK.

Prime areas for concern —
As shown on the preceding page, continuity of insulated construction in the external envelope is necessary to prevent thermal bridging. Nevertheless, some discontinuity is unavoidable where the pattern of construction has to change. For example, windows and doors have significantly higher U-values than elsewhere. Heat loss and condensation risk in these situations is regulated by limiting areas, effectively providing a trade off against very low U-values elsewhere.

The following details should be observed around openings and at ground floor —

Window Sill
- Cavity insulation to underside of window board

Window/Door Jamb
- Proprietary cavity closer and insulated dpc (page 323)
- Lightweight insulation blocks
- Full or part full cavity insulation

Ground Floor & Wall
- Insulation batts installed at least 150mm below top of floor insulation

Window/Door Head
- Cavity insulation cut to fit
- Open perpends
- Lintel filled with insulation
The possibility of a thermal or cold bridge occurring in a specific location can be appraised by calculation. Alternatively, the calculations can be used to determine how much insulation will be required to prevent a cold bridge. The composite lintel of concrete and steel shown below will serve as an example:

\[R_a = 0.180 \]
\[R_{so} = 0.055 \]
\[102.5 \text{ mm brickwork outer leaf}, \quad \lambda = 0.84 \text{ W/mK} \]
\[100 \text{ mm dense concrete lintel}, \quad \lambda = 1.93 \]
\[13 \text{ mm lightweight plaster}, \quad \lambda = 0.16 \]

Wall components, less insulation (steel in lintel is insignificant):

- 102.5 mm brickwork outer leaf: \(\lambda = 0.84 \text{ W/mK} \)
- 100 mm dense concrete lintel: \(\lambda = 1.93 \)
- 13 mm lightweight plaster: \(\lambda = 0.16 \)

Resistances of above components:

- Brickwork: \(0.1025 \div 0.84 = 0.122 \text{ m}^2\text{K/W} \)
- Concrete lintel: \(0.100 \div 1.93 = 0.052 \)
- Lightweight plaster: \(0.013 \div 0.16 = 0.081 \)

Resistances of surfaces:

- Internal (\(R_{si} \)) = 0.123
- Cavity (\(R_a \)) = 0.180
- External (\(R_{so} \)) = 0.055

Summary of resistances = 0.613

To achieve a U-value of say 0.27 W/m²K, total resistance required = \(1 \div 0.27 = 3.703 \text{ m}^2\text{K/W} \)

The insulation in the cavity at the lintel position is required to have a resistance of \(3.703 - 0.613 = 3.09 \text{ m}^2\text{K/W} \)

Using a urethane insulation with a thermal conductivity (\(\lambda \)) of 0.025 W/mK, \(0.025 \times 3.09 = 0.077 \text{ m} \) or 77 mm minimum thickness.

If the cavity closer has the same thermal conductivity, then:

**Summary of resistance = 0.613 - 0.180 (\(R_a \)) = 0.433 \text{ m}^2\text{K/W} **

Total resistance required = \(3.703 \text{ m}^2\text{K/W} \), therefore the cavity closer is required to have a resistance of: \(3.703 - 0.433 = 3.270 \text{ m}^2\text{K/W} \)

Min. cavity closer width = \(0.025 \text{ W/mK} \times 3.270 \text{ m}^2\text{K/W} = 0.082 \text{ m} \) or 82 mm.

In practice, the cavity width and the lintel insulation would exceed 82 mm.

Note: data for resistances and \(\lambda \) values taken from pages 519 to 521.
Air Infiltration ~ heating costs will increase if cold air is allowed to penetrate peripheral gaps and breaks in the continuity of construction. Furthermore, heat energy will escape through structural breaks and the following are prime situations for treatment:

1. Loft hatch
2. Services penetrating the structure
3. Opening components in windows, doors and rooflights
4. Gaps between dry lining and masonry walls

Note: See page 338 for threshold detail.
Main features —

* Site entrance or car parking space to building entrance to be firm and level, with a 900mm min. width. A gentle slope is acceptable with a gradient up to 1 in 20 and up to 1 in 40 in cross falls. A slightly steeper ramped access or easy steps should satisfy A.D. Sections 6.14 & 6.15, and 6.16 & 6.17 respectively.

* An accessible threshold for wheelchairs is required at the principal entrance — see illustration.

* Entrance door — minimum clear opening width of 775mm.

* Corridors, passageways and internal doors of adequate width for wheelchair circulation. Minimum 750mm — see also table 1 in A.D. Section 7.

* Stair minimum clear width of 900mm, with provision of handrails both sides. Other requirements as A.D. K for private stairs.

* Accessible light switches, power, telephone and aerial sockets between 450 and 1200mm above floor level.

* WC provision in the entrance storey or first habitable storey. Door to open outwards. Clear wheelchair space of at least 750mm in front of WC and a preferred dimension of 500 mm either side of the WC as measured from its centre.

* Special provisions are required for passenger lifts and stairs in blocks of flats, to enable disabled people to access other storeys. See A.D. Section 9 for details.

BS 8300: Design of buildings and their approaches to meet the needs of disabled people.
Main features –

* Site entrance, or car parking space to building entrance to be firm and level, i.e. maximum gradient 1 in 20 with a minimum car access zone of 1200mm. Ramped and easy stepped approaches are also acceptable.

* Access to include tactile warnings, i.e. profiled (blistered or ribbed) pavings over a width of at least 1200mm, for the benefit of people with impaired vision. Dropped kerbs are required to ease wheelchair use.

* Special provision for handrails is necessary for those who may have difficulty in negotiating changes in level.

* Guarding and warning to be provided where projections or obstructions occur, e.g. tactile paving could be used around window opening areas.

* Sufficient space for wheelchair manoeuvrability in entrances.

Minimum entrance width of 800mm. Unobstructed space of at least 300mm to the leading (opening) edge of door. Glazed panel in the door to provide visibility from 500 to 1500mm above floor level. Entrance lobby space should be sufficient for a wheelchair user to clear one door before opening another.

* Internal door openings, minimum width 750mm. Unobstructed space of at least 300mm to the leading edge. Visibility panel as above.

continued......
* Main access and internal fire doors that self-close should have a maximum operating force of 20 Newtons at the leading edge. If this is not possible, a power operated door opening and closing system is required.

* Corridors and passageways, minimum unobstructed width 1200mm. Internal lobbies as described on the previous page for external lobbies.

* Lift dimensions and capacities to suit the building size. Ref. BS EN 81-1 and 2: Lifts and service lifts. Alternative vertical access may be by wheelchair stairlift — BS 5776: Specification for powered stairlifts, or a platform lift — BS 6440: Powered lifting platforms for use by disabled people.

* Stair minimum width 1000mm, with step nosings brightly distinguished. Rise maximum 12 risers external, 16 risers internal between landings. Landings to have 1200mm of clear space from any door swings. Step rise, maximum 170mm and uniform throughout. Step going, minimum 250mm and uniform throughout. No open risers. Handrail to each side of the stair.

* Number and location of WCs to reflect ease of access for wheelchair users. In no case should a wheelchair user have to travel more than one storey. Provision may be ‘unisex’ which is generally more suitable, or ‘integral’ with specific sex conveniences. Particular provision is outlined in Section 5 of the Approved Document.

* Section 4 should be consulted for special provisions for restaurants, bars and hotel bedrooms, and for special provisions for spectator seating in theatres, stadia and conference facilities.

6 INTERNAL CONSTRUCTION AND FINISHES

INTERNAL ELEMENTS
INTERNAL WALLS
CONSTRUCTION JOINTS
PARTITIONS
PLASTERS AND PLASTERING
DRY LINING TECHNIQUES
WALL TILING
DOMESTIC FLOORS AND FINISHES
LARGE CAST INSITU GROUND FLOORS
CONCRETE FLOOR SCREEDS
TIMBER SUSPENDED FLOORS
TIMBER BEAM DESIGN
REINFORCED CONCRETE SUSPENDED FLOORS
PRECAST CONCRETE FLOORS
RAISED ACCESS FLOORS
SOUND INSULATION
TIMBER, CONCRETE AND METAL STAIRS
INTERNAL DOORS
FIRE RESISTING DOORS
PLASTERBOARD CEILINGS
SUSPENDED CEILINGS
PAINTS AND PAINTING
JOINERY PRODUCTION
COMPOSITE BOARDING
PLASTICS IN BUILDING
NB. roof coverings, roof insulation and guttering not shown

trussed rafters at 600\%

non-load bearing partition

upper floor - horizontal division between storeys - carries floor loads to walls

load bearing wall - carries loads received to the foundations

insulated external wall

floor screed

insulation

dpm

concrete floor slab

foundations

hardcore

stairs - provides a means of communication and circulation between the various floor levels within a building

NB. all work below dpc level is classed as substructure
Internal Walls — their primary function is to act as a vertical divider of floor space and in so doing form a storey height enclosing element.

Other Possible Functions:

- provide a degree of fire resistance
- provide a degree of sound insulation
- provide a degree of thermal insulation
- provide the required degree of durability
- provide for low future maintenance
- provide a suitable medium for housing services
- provide the necessary resistance to impact damage and vibration due to doors being slammed
- constructed as a load bearing or non-load bearing wall
- provide borrowed light facilities
- provide a good fixing medium for trims
- provide a means of access to, egress from and communication between internal spaces
- provide a suitable background for fixtures and fittings
- provide the actual or suitable background for finishes and decorations
Internal Walls — there are two basic design concepts for internal walls those which accept and transmit structural loads to the foundations are called Load Bearing Walls and those which support only their own self-weight and do not accept any structural loads are called Non-load Bearing Walls or Partitions.

Typical Examples ~

![Diagram of internal walls and structural load transmission](image)

NB. guttering and roof coverings not shown
Internal Brick Walls ~ these can be load bearing or non-load bearing (see previous page) and for most two storey buildings are built in half brick thickness in stretcher bond.

Typical Details ~

- Roof struts transmit loads from purlin to wall
- Ceiling joists transmit ceiling loads to wall
- Upper floor
- Lapped upper floor joists bearing on wall
- DPC and DPM to have continuity through wall
- Wall transmits combined roof and floor loads to foundations
- Every alternate course bonded to external wall
- Load bearing wall
- Junctions and openings
- NB. only applicable where cold bridging is not a concern

Concrete lintel-size governed by opening span and loading - end bearing 100 mm minimum
Internal Block Walls ~ these can be load bearing or non-load bearing (see page 547) the thickness and type of block to be used will depend upon the loadings it has to carry.

Typical Details ~

- every alternate course block bonded to external wall
- roof struts transmit loads from purlins to wall
- block internal load bearing wall
- external wall
- internal wall
- expanded metal strip built into every bed joint of butt jointed internal wall
- concrete lintel - size governed by opening span and loading - end bearing 100mm min.
Internal Walls ~ an alternative to brick and block bonding shown on the preceding two pages is application of wall profiles. These are quick and simple to install, provide adequate lateral stability, sufficient movement flexibility and will overcome the problem of thermal bridging where a brick partition would otherwise bond into a block inner leaf. They are also useful for attaching extension walls at right angles to existing masonry.

Application ~

![Diagram of wall profiles](image)

- blockwork inner leaf of cavity wall
- galvanised or stainless steel profile, plugged and screwed to wall
- loose fit connector tie
- blockwork partition

WALL PROFILE ~ 2.4 m long

TIE ~ every block course and every 3rd brick course

ribbed or perforated surface

40 mm 8 mm

screw slot

30 mm 100 mm
Movement or Construction Joints - provide an alternative to ties or mesh reinforcement in masonry bed joints. Even with reinforcement, lightweight concrete block walls are renowned for producing unsightly and possibly unstable shrinkage cracks. Galvanised or stainless steel formers and ties are built in at approximately 6m horizontal spacing to accommodate initial drying, shrinkage movement and structural settlement. One side of the former is fitted with profiled or perforated ties to bond into bed joints and the other has plastic sleeved ties. The sleeved tie maintains continuity, but restricts bonding to allow for controlled movement.

Internal Partitions ~ these are vertical dividers which are used to separate the internal space of a building into rooms and circulation areas such as corridors. Partitions which give support to a floor or roof are classified as load bearing whereas those which give no such support are called non-load bearing.

Load Bearing Partitions ~ these walls can be constructed of bricks, blocks or insitu concrete by traditional methods and have the design advantages of being capable of having good fire resistance and/or high sound insulation. Their main disadvantage is permanence giving rise to an inflexible internal layout.

Non-load Bearing Partitions ~ the wide variety of methods available makes it difficult to classify the form of partition but most can be placed into one of three groups:

1. Masonry partitions.
2. Stud partitions ~ see pages 553 & 554.
3. Demountable partitions ~ see pages 555 & 556.

Masonry Partitions ~ these are usually built with blocks of clay or lightweight concrete which are readily available and easy to construct thus making them popular. These masonry partitions should be adequately tied to the structure or load bearing walls to provide continuity as a sound barrier, provide edge restraint and to reduce the shrinkage cracking which inevitably occurs at abutments. Wherever possible openings for doors should be in the form of storey height frames to provide extra stiffness at these positions.

Typical Details ~

- masonry partition
- dovetail anchors to alternate courses
- RC column
- cast-in wall ties to alternate courses
- fishtail cramps surfixed to alternate block courses or built in wall ties
- masonry partition
- block bonding
- load bearing wall

552
Timber Stud Partitions ~ these are non-load bearing internal dividing walls which are easy to construct, lightweight, adaptable and can be clad and infilled with various materials to give different finishes and properties. The timber studs should be of prepared or planed material to ensure that the wall is of constant thickness with parallel faces. Stud spacings will be governed by the size and spanning ability of the facing or cladding material.

Typical Details ~

![Diagram of Timber Stud Partitions]

- **External Wall**
- **Upper Floor**
- **95 x 45 Head Plate Fixed to Joists**
- **Cladding or Facing**
- **95 x 70 Head - See Detail Below**
- **95 x 45 Noggins**
- **95 x 70 Jambs**
- **Folding Wedges or Packing as Required**
- **95 x 45 Studs at 400 °C**
- **95 x 45 Sole Plate Bolted to Floor**
- **Splayed Shoulder**
- **Jamb Housed 12mm Deep into Head and Sole Plates**
- **Mortice for Tenon**
- **Mortice for Wedge**
- **Tenon Head to Opening**
Stud Partitions ~ these non-load bearing partitions consist of a framework of vertical studs to which the facing material can be attached. The void between the studs created by the two faces can be infilled to meet specific design needs. The traditional material for stud partitions is timber (see Timber Stud Partitions on previous page) but a similar arrangement can be constructed using metal studs faced on both sides with plasterboard.

Typical Metal Stud Partition Details ~

- **floor or ceiling joist**
- **architrave**
- **38mm thick fixing batten**
- **head channel fixed to ceiling at 600°c**
- **plasterboard facing screwed to metal studs at 300°c**
- **metal channel studs cut to fit web to web and twisted into position at 600°c**
- **cut outs in studs for housing services in void or cavity**
- **skirting**
- **floor channel**
- **38mm fixing batten**
- **door frame or lining**
- **facing**
- **wall**

VERTICAL SECTION

HORIZONTAL SECTION
Partitions ~ these can be defined as vertical internal space dividers and are usually non-loadbearing. They can be permanent, constructed of materials such as bricks or blocks or they can be demountable constructed using lightweight materials and capable of being taken down and moved to a new location incurring little or no damage to the structure or finishes. There is a wide range of demountable partitions available constructed from a variety of materials giving a range that will be suitable for most situations. Many of these partitions have a permanent finish which requires no decoration and only periodic cleaning in the context of planned maintenance.

Typical Example ~
Demountable Partitions – it can be argued that all internal non-load bearing partitions are demountable and therefore the major problem is the amount of demountability required in the context of ease of moving and the possible frequency anticipated. The range of partitions available is very wide including stud partitions, framed panel partitions (see Demountable Partitions on page 555), panel to panel partitions and sliding/folding partitions which are similar in concept to industrial doors (see Industrial Doors on pages 367 and 368) The latter type is often used where movement of the partition is required frequently. The choice is therefore based on the above stated factors taking into account finish and glazing requirements together with any personal preference for a particular system but in all cases the same basic problems will have to be considered:-

METHOD 1 - easily demounted and re-erected, good sound insulation can be achieved.

METHOD 2 - easily demounted and re-erected if ceiling can take pressure, flanking sound may be a problem.

METHOD 3 - alternative to 2

METHOD 4 - alternative to 3
Plaster ~ this is a wet mixed material applied to internal walls as a finish to fill in any irregularities in the wall surface and to provide a smooth continuous surface suitable for direct decoration. The plaster finish also needs to have a good resistance to impact damage. The material used to fulfil these requirements is gypsum plaster. Gypsum is a crystalline combination of calcium sulphate and water. The raw material is crushed, screened and heated to dehydrate the gypsum and this process together with various additives defines its type as set out in BSs 1191-1 and 1191-2: Specification for gypsum building plasters.

Plaster of Paris is quick setting plaster (5 to 10 minutes) and is therefore not suitable for walls but can be used for filling cracks and cast or run mouldings.

Browning and Bonding plasters are used as undercoats to Premixed lightweight plasters.

All plaster should be stored in dry conditions since any absorption of moisture before mixing may shorten the normal setting time of about one and a half hours which can reduce the strength of the set plaster. Gypsum plasters are not suitable for use in temperatures exceeding 43°C and should not be applied to frozen backgrounds.

A good key to the background and between successive coats is essential for successful plastering. Generally brick and block walls provide the key whereas concrete unless cast against rough formwork will need to be treated to provide the key.
Internal Wall Finishes ~ these can be classified as wet or dry. The traditional wet finish is plaster which is mixed and applied to the wall in layers to achieve a smooth and durable finish suitable for decorative treatments such as paint and wallpaper.

Most plasters are supplied in 25kg paper sacks and require only the addition of clean water or sand and clean water according to the type of plaster being used.

Typical Method of Application ~

1. PREPARATION
 finishing coat of plaster applied with steel trowel to give a smooth finish

2. UNDERCOATING
 thin coats of undercoat plaster applied and built up to required thickness
 floated undercoat brought to a true and level surface with a rule or straightedge

3. FINISHING
 textured surfaces can be obtained by using a sponge, hair brush, felt float or steel combs

 Typical data for brick and block backgrounds
 Undercoat - 12 mm thick
 Finishing coat - 2 mm thick
 Setting times ~
 Undercoat - 2 hours
 Finishing coat - 1 hour
Plasterboard - a board material made of two sheets of thin millboard with gypsum plaster between - three edge profiles are available:

Tapered Edge

A flush seamless surface is obtained by filling the joint with a special filling plaster, applying a joint tape over the filling and finishing with a thin layer of joint filling plaster the edge of which is feathered out using a slightly damp jointing sponge.

Square Edge - edges are close butted and finished with a cover fillet or the joint is covered with a jute scrim before being plastered.

Bevelled Edge - edges are close butted forming a vee-joint which becomes a feature of the lining.

Typical Details

```
230

finishing plaster dabs

1200 wide boards fixed to metal channels with self tapping screws

electric services behind board

foot lifter to raise boards tight to ceiling

nail holes made good

bitumen impregnated fibreboard pads set in plaster and levelled in all directions relative to one another

Alternative - timber studs fixed to wall to support all board edges - boards fixed with nails
```
Dry Linings ~ the internal surfaces of walls and partitions are usually covered with a wet finish (plaster or rendering) or with a dry lining such as plasterboard, insulating fibre board, hardboard, timber boards, and plywood, all of which can be supplied with a permanent finish or they can be supplied to accept an applied finish such as paint or wallpaper. The main purpose of any applied covering to an internal wall surface is to provide an acceptable but not necessarily an elegant or expensive wall finish. It is also very difficult and expensive to build a brick or block wall which has a fair face to both sides since this would involve the hand selection of bricks and blocks to ensure a constant thickness together with a high degree of skill to construct a satisfactory wall. The main advantage of dry lining walls is that the drying out period required with wet finishes is eliminated. By careful selection and fixing of some dry lining materials it is possible to improve the thermal insulation properties of a wall. Dry linings can be fixed direct to the backing by means of a recommended adhesive or they can be fixed to a suitable arrangement of wall battens.

Typical Example ~

- Strips of contact adhesive applied to wall and backs of boards as recommended by manufacturer so that strips on wall and boards match.
- Wall to be sound, reasonably flat, dry and free of dust, dirt and grease.
- Lining boards pressed firmly onto adhesive.
- Backing wall.
- Holes for service outlets cut prior to fixing the boards.
- Abutment joints can be moulded as a feature, covered with a fillet or if lining is to be decorated they can be filled or taped over.

For further examples see next page.
Typical Examples ~

38 x 20 softwood
vertical battens at
400 c/c
fixed to
wall and
packed as
required
to align
with other
battens

38 x 20
noggins
at 1.200
maximum
centres

aluminium
foil pinned
to
wall if
required

38 x 20
softwood
horizontal
battens at
600 c/c
fixed to
wall and
packed as
required

noggins at
joints if
required

aluminium
foil lining
if required

holes for service outlets
cut prior to fixing the boards

*alternatively use vapour check wallboard—see next page
Plasterboard Types — to BS 1230-1: Specification for plasterboard excluding materials submitted to secondary operations.

BS PLASTERBOARDS:

1. Wallboard — ivory faced for taping, jointing and direct decoration; grey faced for finishing plaster or wall adhesion with dabs. General applications, i.e. internal walls, ceilings and partitions. Thicknesses: 9.5, 12.5 and 15mm. Widths: 900 and 1200mm. Lengths: vary between 1800 and 3000mm.

2. Baseboard — lining ceilings requiring direct plastering. Thickness: 9.5mm. Width: 900mm. Length: 1219mm.

4. Firecheck — wallboard of glass fibre reinforced vermiculite and gypsum for fire cladding. Thicknesses: 12.5 and 15mm. Widths: 900 and 1200mm. Lengths: 1800, 2400, 2700 and 3000mm. A 25mm thickness is also produced, 600mm wide × 3000mm long.

5. Lath — rounded edge wallboard of limited area for easy application to ceilings requiring a direct plaster finish. Thicknesses: 9.5 and 12.5mm. Widths: 400 and 600mm. Lengths: 1200 and 1219mm.

6. Plank — used as fire protection for structural steel and timber, in addition to sound insulation in wall panels and floating floors. Thickness: 19mm. Width: 600mm. Lengths: 2350, 2400, 2700 and 3000mm.

NON-STANDARD PLASTERBOARDS:

1. Contour — only 6mm in thickness to adapt to curved featurework. Width: 1200mm. Lengths: 2400m and 3000mm.

2. Vapourcheck — a metallized polyester wallboard lining to provide an integral water vapour control layer. Thicknesses: 9.5 and 12.5mm. Widths: 900 and 1200mm. Lengths: vary between 1800 and 3000mm.

3. Thermalcheck — various expanded or foamed insulants are bonded to wallboard. Approximately 25 — 50mm overall thickness in board sizes 1200 × 2400mm.
Glazed Wall Tiles ~ internal glazed wall tiles are usually made to the various specifications under BS 6431: Ceramic floor and wall tiles.

Internal Glazed Wall Tiles ~ the body of the tile can be made from ball-clay, china clay, china stone, flint and limestone. The material is usually mixed with water to the desired consistency, shaped and then fired in a tunnel oven at a high temperature (1150°C) for several days to form the unglazed biscuit tile. The glaze, pattern and colour can now be imparted onto the biscuit tile before the final firing process at a temperature slightly lower than that of the first firing (1050°C) for about two days.

Typical Internal Glazed Wall Tiles and Fittings ~

Sizes — Modular
100 × 100 × 5 mm thick and
200 × 100 × 6.5 mm thick.

Non-modular
152 × 152 × 5 to 8 mm thick and
108 × 108 × 4 and 6.5 mm thick.

Fittings — wide range available particularly in the non-modular format.

- lugs to maintain joint spacing
- SPACER TILES
- ROUND EDGE
- ROUND EDGE EXTERNAL CORNER
- ROUND EDGE SQUARE HEAD
- ROUND EDGE AND COVE FOOT
- ATTACHED ANGLE TILE FITTINGS
- BEAD FITTINGS
Bedding of Internal Wall Tiles ~ generally glazed internal wall tiles are considered to be inert in the context of moisture and thermal movement, therefore if movement of the applied wall tile finish is to be avoided attention must be given to the background and the method of fixing the tiles.

Backgrounds ~ these are usually of a cement rendered or plastered surface and should be flat, dry, stable, firmly attached to the substrate and sufficiently old enough for any initial shrinkage to have taken place. The flatness of the background should be not more than 3mm in 2 000 for the thin bedding of tiles and not more than 6mm in 2 000 for thick bedded tiles.

Fixing Wall Tiles ~ two methods are in general use:

1. Thin Bedding — lightweight internal glazed wall tiles fixed dry using a recommended adhesive which is applied to wall in small areas 1m² at a time with a notched trowel, the tile being pressed or tapped into the adhesive.

2. Thick Bedding — cement mortar within the mix range of 1:3 to 1:4 is used as the adhesive either by buttering the backs of the tiles which are then pressed or tapped into position or by rendering the wall surface to a thickness of approximately 10mm and then applying the lightly buttered tiles (1:2 mix) to the rendered wall surface within two hours. It is usually necessary to soak the wall tiles in water to reduce suction before they are placed in position.

Grouting ~ when the wall tiles have set, the joints can be grouted by rubbing into the joints a grout paste either using a sponge or brush. Most grouting materials are based on cement with inert fillers and are used neat.

Typical Example ~
Primary Functions ~

1. Provide a level surface with sufficient strength to support the imposed loads of people and furniture.
2. Exclude the passage of water and water vapour to the interior of the building.
3. Provide resistance to unacceptable heat loss through the floor.
4. Provide the correct type of surface to receive the chosen finish.

Types ~

- Solid concrete bed laid over compacted hardcore - see pages 192 & 566
- Insulated screed to provide surface for floor finish
- Low heat loss
- In domestic work on normal soils seldom any problems due to bearing capacity of subsoil
- Low maintenance
- Solid floor as above
- Original ground level
- If depth of fill exceeds 600 mm a suspended floor could be better due to the long term settlement of fill
- Reduced level
- Low heat loss and maintenance
- Insulated suspended timber floor - for details see page 567
- Maintenance higher than above types
- Heat loss higher than above types
- Suspended floors have more resilience than solid floors and are therefore less tiring to users

SOLID FLOOR ON LEVEL SITE

SOLID FLOOR ON SLOPING SITE

SUSPENDED TIMBER FLOOR
A domestic solid ground floor consists of three components:

1. Hardcore — a suitable filling material to make up the top soil removal and reduced level excavations. It should have a top surface which can be rolled out to ensure that cement grout is not lost from the concrete. It may be necessary to blind the top surface with a layer of sand especially if the damp-proof membrane is to be placed under the concrete bed.

2. Damp-proof Membrane — an impervious layer such as heavy duty polythene sheeting to prevent moisture passing through the floor to the interior of the building.

3. Concrete Bed — the component providing the solid level surface to which screeds and finishes can be applied.

Typical Details ~

NB. a compromise to the above methods is to place the dpm in the middle of the concrete bed but this needs two concrete pouring operations.
Suspended Timber Ground Floors ~ these need to have a well ventilated space beneath the floor construction to prevent the moisture content of the timber rising above an unacceptable level (i.e. not more than 20%) which would create the conditions for possible fungal attack.

Typical Details ~

- Air bricks at 2,000% in external walls with slate or similar trunking forming flue
- Board or similar flooring
- Sleeper wall in honeycomb bond
- Underfloor space to be clear of debris and cross ventilated
- Joists at 400% fixed clear of external wall
- Insulation
- Well compacted hardcore 15 N/mm² (1:3:6) concrete not less than 100 mm thick - top surface to have trowel or spade finish and to be not lower than highest adjoining ground level
- 125 x 50 joists at 400% on nylon netting
- Flooring
- DPC
- Half brick voids
- Sleeper walls at 2,000%
Precast Concrete Floors – these have been successfully adapted from commercial building practice (see pages 588 to 590), as an economic alternative construction technique for suspended timber and solid concrete domestic ground (and upper) floors. See also page 325 for special situations.

Typical Details –

BEAMS PARALLEL WITH EXTERNAL WALL

POLYPROPYLENE VENTILATOR

stepped telescopic sleeve

grill clips to sleeve: 1500mm²/m run of wall OR 500mm²/m² of floor area (take greater value)

organic material stripped: surface treated with weed killer: lower level than adjacent ground if free draining (not Scotland)

Typical Beam/Rib and Block Detail

BEAMS BEARING ON EXTERNAL WALL

if inner ground level is significantly lower, this area to be designed as a retaining wall

lightweight concrete block, min. 7N/mm²

prestressed concrete beam min. 50N/mm²

floor finish as above or screeded (reinforce in garage)

TYPICAL BEAM/RIB AND BLOCK DETAIL

Domestic Suspended Concrete Ground Floors
Floor Finishes ~ these are usually applied to a structural base but may form part of the floor structure as in the case of floor boards. Most finishes are chosen to fulfil a particular function such as:

1. Appearance — chosen mainly for their aesthetic appeal or effect but should however have reasonable wearing properties. Examples are carpets; carpet tiles and wood blocks.

2. High Resistance — chosen mainly for their wearing and impact resistance properties and for high usage areas such as kitchens. Examples are quarry tiles and granolithic pavings.

3. Hygiene — chosen to provide an impervious easy to clean surface with reasonable aesthetic appeal. Examples are quarry tiles and polyvinyl chloride (PVC) sheets and tiles.

Carpets and Carpet Tiles — made from animal hair, mineral fibres and man made fibres such as nylon and acrylic. They are also available in mixtures of the above. A wide range of patterns; sizes and colours are available. Carpets and carpet tiles can be laid loose, stuck with a suitable adhesive or in the case of carpets edge fixed using special grip strips.

PVC Tiles — made from a blended mix of thermoplastic binders; fillers and pigments in a wide variety of colours and patterns to the recommendations of BS 3261. PVC tiles are usually 305 × 305 × 1.6mm thick and are stuck to a suitable base with special adhesives as recommended by the manufacturer.

Quarry Tiles ~
Tongue and Groove Boarding ~ prepared from softwoods to the recommendations of BS 1297. Boards are laid at right angles to the joists and are fixed with 2 No. 65mm long cut floor brads per joists. The ends of board lengths are butt jointed on the centre line of the supporting joist.

Maximum board spans are:
- 16 mm thick: 505 mm
- 19 mm thick: 600 mm
- 21 mm thick: 635 mm
- 28 mm thick: 790 mm

Timber Strip Flooring ~ strip flooring is usually considered to be boards under 100 mm face width. In good class work hardwoods would be specified the boards being individually laid and secret nailed. Strip flooring can be obtained treated with a spirit-based fungicide. Spacing of supports depends on type of timber used and applied loading. After laying the strip flooring should be finely sanded and treated with a seal or wax. In common with all timber floorings a narrow perimeter gap should be left for moisture movement.

Chipboard ~ sometimes called Particle Board is made from particles of wood bonded with a synthetic resin and/or other organic binders to the recommendations of BS EN 312. It can be obtained with a rebated or tongue and groove joint in 600 mm wide boards 19 mm thick. The former must be supported on all the longitudinal edges whereas the latter should be supported at all cross joints.

Wood Blocks ~ prepared from hardwoods and softwoods to the recommendations of BS 1187. Wood blocks can be laid to a variety of patterns, also different timbers can be used to create colour and grain effects. Laid blocks should be finely sanded and sealed or polished.
Large Cast-Insitu Ground Floors ~ these are floors designed to carry medium to heavy loadings such as those used in factories, warehouses, shops, garages and similar buildings. Their design and construction is similar to that used for small roads (see pages 114 to 117). Floors of this type are usually laid in alternate 4.500 wide strips running the length of the building or in line with the anticipated traffic flow where applicable. Transverse joints will be required to control the tensile stresses due to the thermal movement and contraction of the slab. The spacing of these joints will be determined by the design and the amount of reinforcement used. Such joints can either be formed by using a crack inducer or by sawing a 20 to 25mm deep groove into the upper surface of the slab within 20 to 30 hours of casting.

Typical Layout ~

Surface Finishing ~ the surface of the concrete may be finished by power floating or trowelling which is carried out whilst the concrete is still plastic but with sufficient resistance to the weight of machine and operator whose footprint should not leave a depression of more than 3mm. Power grinding of the surface is an alternative method which is carried out within a few days of the concrete hardening. The wet concrete having been surface finished with a skip float after the initial levelling with a tamping bar has been carried out. Power grinding removes 1 to 2mm from the surface and is intended to improve surface texture and not to make good deficiencies in levels.
Vacuum Dewatering ~ if the specification calls for a power float surface finish vacuum dewatering could be used to shorten the time delay between tamping the concrete and power floating the surface. This method is suitable for slabs up to 300mm thick. The vacuum should be applied for approximately 3 minutes for every 25mm depth of concrete which will allow power floating to take place usually within 20 to 30 minutes of the tamping operation. The applied vacuum forces out the surplus water by compressing the slab and this causes a reduction in slab depth of approximately 2% therefore packing strips should be placed on the side forms before tamping to allow for sufficient surcharge of concrete.

Typical Details ~
Concrete Floor Screeds — these are used to give a concrete floor a finish suitable to receive the floor finish or covering specified. It should be noted that it is not always necessary or desirable to apply a floor screed to receive a floor covering, techniques are available to enable the concrete floor surface to be prepared at the time of casting to receive the coverings at a later stage.

Typical Screed Mixes —

<table>
<thead>
<tr>
<th>Screed Thickness</th>
<th>Cement</th>
<th>Dry Fine Aggregate <5mm</th>
<th>Coarse Aggregate >5mm <10mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 40mm</td>
<td>1</td>
<td>3 to 4 1/2</td>
<td>—</td>
</tr>
<tr>
<td>40 to 75mm</td>
<td>1</td>
<td>3 to 4 1/2</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1 1/2</td>
<td>3</td>
</tr>
</tbody>
</table>

Laying Floor Screeds — floor screeds should not be laid in bays since this can cause curling at the edges, screeds can however be laid in 3:000 wide strips to receive thin coverings. Levelling of screeds is achieved by working to levelled timber screeding batten or alternatively a 75mm wide band of levelled screed with square edges can be laid to the perimeter of the floor prior to the general screed laying operation.

Screed Types —

- **Monolithic Screeds** — screed laid directly on concrete floor slab within three hours of placing concrete — before any screed is placed all surface water should be removed — all screeding work should be carried out from scaffold board runways to avoid walking on the ‘green’ concrete slab.
Concrete Floor Screeds

Separate Screeds —
screed is laid onto the concrete floor slab after it has cured. The floor surface must be clean and rough enough to ensure an adequate bond unless the floor surface is prepared by applying a suitable bonding agent or by brushing with a cement/water grout of a thick cream like consistency just before laying the screed.

Unbonded Screeds —
screed is laid directly over a damp-proof membrane or over a damp-proof membrane and insulation. A rigid form of floor insulation is required where the concrete floor slab is in contact with the ground. Care must be taken during this operation to ensure that the damp-proof membrane is not damaged.

Floating Screeds —
a resilient quilt of 25mm thickness is laid with butt joints and turned up at the edges against the abutment walls, the screed being laid directly over the resilient quilt. The main objective of this form of floor screed is to improve the sound insulation properties of the floor.

*preferably wire mesh reinforced
Primary Functions ~
1. Provide a level surface with sufficient strength to support the imposed loads of people and furniture plus the dead loads of flooring and ceiling.
2. Reduce heat loss from lower floor as required.
3. Provide required degree of sound insulation.
4. Provide required degree of fire resistance.

Basic Construction — a timber suspended upper floor consists of a series of beams or joists support by load bearing walls sized and spaced to carry all the dead and imposed loads.

Joist Sizing — three methods can be used:

 *BS 6399-1: Code of practice for dead and imposed loads (max. 1.5 kN/m² distributed, 1.4 kN/m² concentrated).
 *TRADA publication — Timber Intermediate Floors for Dwellings (exc. compartment floors).

2. Calculation formula:—
 \[BM = \frac{fbd^2}{6} \]
 where
 - BM = bending moment
 - f = fibre stress
 - b = breadth
 - d = depth in mm
 above assumes that joists have a breadth of 50mm and are at 400°C/s spacing

3. Empirical formula:—
 \[D = \frac{\text{span in mm}}{24} + 50 \]
 where
 - D = depth of joist in mm

Support and Restraint —
- external wall
- mortar joint recessed and air leakage sealed
- silicone mastic sealant
- 30 × 5 galvanised steel restraint straps at not more than 2.000% outside
- 38 mm min thick support noggins at least half of joist depth
- joists parallel to wall
- joists 400, 450 or 600%
Strutting ~ used in timber suspended floors to restrict the movements due to twisting and vibration which could damage ceiling finishes. Strutting should be included if the span of the floor joists exceeds 2.5m and is positioned on the centre line of the span. Max. floor span ~ 6m measured centre to centre of bearing (inner leaf centre line in cavity wall).

Typical Details ~

- **External wall**
- **38 x 50 sawn softwood herringbone strutting fixed side by side on centre line of joist span**
- **Folding wedges or suitable packing to each end of strutting**
- **50 mm wide solid timber strutting giving high degree of restraint**
- **Strutting fixed in line**
- **Strutting fixed either side of centre line - less restraint but easier to fix**
- **Galvanised steel herringbone strutting fixed on centre line of joist span**
Lateral Restraint ~ external, compartment (fire), separating (party) and internal loadbearing walls must have horizontal support from adjacent floors, to restrict movement. Exceptions occur when the wall is less than 3m long.

Methods:

1. 90mm end bearing of floor joists, spaced not more than 1.2m apart — see page 575.

2. Galvanised steel straps spaced at intervals not exceeding 2m and fixed square to joists — see page 575.

3. Joists carried by BS 5628-1 approved galvanised steel hangers.

4. Adjacent floors at or about the same level, contacting with the wall at no more than 2m intervals.

Ref. BS EN 845-1: Specification for ancillary components for masonry. Ties, tension straps, hangers and brackets.
Wall Stability — at right angles to floor and ceiling joists this is achieved by building the joists into masonry support walls or locating them on approved joist hangers.

Walls parallel to joists are stabilised by lateral restraint straps. Buildings constructed before current stability requirements (see Bldg. Regs. A.D: A — Structure) often show signs of wall bulge due to the effects of eccentric loading and years of thermal movement.

Remedial Measures —

1. **Retro-strap**
 - Strap bolted to wall
 - 30×5 mm galv. m.s. strap
 - Folding wedges
 - Solid strutting between joists

2. **Retro-stud**
 - Nut, washer and pattress
 - Floor decking
 - Nut and plate washer
 - 200 mm dia. m.s. studding

3. **Through tie**
 - Decorative pattress plate, washer and nut to threaded end of m.s. tie
 - Tie bar through clearance holes in joist centres

Location of straps and ties

Location of straps and ties

Common decorative iron pattress plates and straps

578
Trimming Members ~ these are the edge members of an opening in a floor and are the same depth as common joists but are usually 25mm wider.

Typical Details ~

TRIMMING TO STAIRWELL

TRIMMING AROUND FLUE

TUSK TENON JOINT

HOUSED JOINT

JOIST HANGER

minimum recommended dimensions for straight flight stairs

2700 min.

900 min.

200 min.

200 min.

50 min.

50 min.

trimmed joist

trimmer

trimming joist

common joist

chimney flue

wedge

joist hangers

tusk tenon joint

wedge

mortice for wedge

housing and mortice

w

D

3

housing

D

2

galvanised steel joist hanger

D

W/3

W

4

4

150 min.

W/3

D

W

W/4

D
Typical spans and loading for floor joists of general structural grade —

<table>
<thead>
<tr>
<th>Sawn size (mm × mm)</th>
<th>Maximum clear span (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 × 75</td>
<td>0.22 1.09 0.83</td>
</tr>
<tr>
<td>38 × 100</td>
<td>1.91 1.78 1.38</td>
</tr>
<tr>
<td>38 × 125</td>
<td>2.54 2.45 2.01</td>
</tr>
<tr>
<td>38 × 150</td>
<td>3.05 2.93 2.56</td>
</tr>
<tr>
<td>38 × 175</td>
<td>3.55 3.40 2.96</td>
</tr>
<tr>
<td>38 × 200</td>
<td>4.04 3.85 3.35</td>
</tr>
<tr>
<td>38 × 225</td>
<td>4.53 4.29 3.73</td>
</tr>
<tr>
<td>50 × 75</td>
<td>1.45 1.37 1.08</td>
</tr>
<tr>
<td>50 × 100</td>
<td>2.18 2.06 1.76</td>
</tr>
<tr>
<td>50 × 125</td>
<td>2.79 2.68 2.44</td>
</tr>
<tr>
<td>50 × 150</td>
<td>3.33 3.21 2.92</td>
</tr>
<tr>
<td>50 × 175</td>
<td>3.88 3.73 3.38</td>
</tr>
<tr>
<td>50 × 200</td>
<td>4.42 4.25 3.82</td>
</tr>
<tr>
<td>50 × 225</td>
<td>4.88 4.74 4.26</td>
</tr>
<tr>
<td>63 × 100</td>
<td>2.41 2.29 2.01</td>
</tr>
<tr>
<td>63 × 125</td>
<td>3.00 2.89 2.63</td>
</tr>
<tr>
<td>63 × 150</td>
<td>3.59 3.46 3.15</td>
</tr>
<tr>
<td>63 × 175</td>
<td>4.17 4.02 3.66</td>
</tr>
<tr>
<td>63 × 200</td>
<td>4.73 4.58 4.18</td>
</tr>
<tr>
<td>63 × 225</td>
<td>5.15 5.01 4.68</td>
</tr>
<tr>
<td>75 × 125</td>
<td>3.18 3.06 2.79</td>
</tr>
<tr>
<td>75 × 150</td>
<td>3.79 3.66 3.33</td>
</tr>
<tr>
<td>75 × 175</td>
<td>4.41 4.25 3.88</td>
</tr>
<tr>
<td>75 × 200</td>
<td>4.92 4.79 4.42</td>
</tr>
<tr>
<td>75 × 225</td>
<td>5.36 5.22 4.88</td>
</tr>
</tbody>
</table>

Notes:
1. Where a bath is supported, the joists should be duplicated.
2. See pages 33 and 34 for material dead weights.
Joist and Beam Sizing – design tables and formulae have limitations, therefore where loading, span and/or conventional joist spacings are exceeded, calculations are required. BS 5268: Structural Use Of Timber and BS EN 338: Structural Timber – Strength Classes, are both useful resource material for detailed information on a variety of timber species. The following example serves to provide guidance on the design process for determining joist size, measurement of deflection, safe bearing and resistance to shear force:

Total load (W) per joist = 5m × 0.4m × 2.25kN/m² = 4.5kN

or: \(\frac{4.5\text{kN}}{5 \text{m span}} = 0.9\text{kN/m} \)

Resistance to bending –

Bending moment formulae are shown on page 418

\[BM = \frac{WL}{8} = \frac{fbd^2}{6} \]

Where: \(W = \) total load, 4.5 kN (4500 N)
\(L = \) span, 5m (5000mm)
\(f = \) fibre stress of timber, 7.5N/mm²
\(b = \) breadth of joist, try 50mm
\(d = \) depth of joist, unknown

Transposing:

\[\frac{WL}{8} = \frac{fbd^2}{6} \]

Becomes:

\[d = \sqrt[6]{\frac{6WL}{8fb}} = \sqrt[6]{\frac{6 \times 4500 \times 5000}{8 \times 7.5 \times 50}} = 212\text{mm} \]

Nearest commercial size: 50mm × 225mm
Joist and Beam Sizing ~ calculating overall dimensions alone is insufficient, checks should also be made to satisfy: resistance to deflection, adequate safe bearing and resistance to shear.

Deflection — should be minimal to prevent damage to plastered ceilings. An allowance of up to $0.003 \times \text{span}$ is normally acceptable; for the preceding example this will be:

$$0.003 \times 5000 \text{mm} = 15 \text{mm}$$

The formula for calculating deflection due to a uniformly distributed load (see page 420) is:

$$\frac{5WL^3}{384EI}$$ where \(l = \frac{bd^3}{12} \)

\[l = \frac{50 \times (225)^3}{12} = 4.75 \times (10)^7 \]

So, deflection = \[\frac{5 \times 4500 \times (5000)^3}{384 \times 10800 \times 4.75 \times (10)^7} = 14.27 \text{mm} \]

NB. This is only just within the calculated allowance of 15mm, therefore it would be prudent to specify slightly wider or deeper joists to allow for unknown future use.

Safe Bearing ~

$$\text{load at the joist end: } W/2$$

$$= \text{compression perpendicular to grain } \times \text{ breadth}$$

$$= \frac{4500}{2} \times \frac{1}{9} \times 50 = 24 \text{mm.}$$

therefore full support from masonry (90mm min.) or joist hangers will be more than adequate.

Shear Strength ~

$$V = \frac{2bdv}{3}$$

where: \(V = \text{vertical loading at the joist end, } W/2 \)

\(v = \text{shear strength parallel to the grain, } 0.7 \text{ N/mm}^2 \)

Transposing:-

$$bd = \frac{3V}{2v} = \frac{3 \times 2250}{2 \times 0.7} = 4821 \text{mm}^2 \text{ minimum}$$

Actual \(bd = 50 \text{mm} \times 225 \text{mm} = 11.250 \text{mm}^2 \)

Resistance to shear is satisfied as actual is well above the minimum.
Reinforced Concrete Suspended Floors — a simple reinforced concrete flat slab cast to act as a suspended floor is not usually economical for spans over 5,000. To overcome this problem, beams can be incorporated into the design to span in one or two directions. Such beams usually span between columns which transfer their loads to the foundations. The disadvantages of introducing beams are the greater overall depth of the floor construction and the increased complexity of the formwork and reinforcement. To reduce the overall depth of the floor construction, flat slabs can be used where the beam is incorporated with the depth of the slab. This method usually results in a deeper slab with complex reinforcement especially at the column positions.

Typical Examples —

ONE WAY SPANNING SLAB

S = span economic range 2.400 - 7.500

TWO WAY SPANNING SLAB

S = span economic range 4.000 to 8.000

TWO WAY SPANNING FLAT SLAB

Economic span range — centre to centre of beam strips ~ 6.000 to 9.000
Ribbed Floors ~ to reduce the overall depth of a traditional cast insitu reinforced concrete beam and slab suspended floor a ribbed floor could be used. The basic concept is to replace the wide spaced deep beams with narrow spaced shallow beams or ribs which will carry only a small amount of slab loading. These floors can be designed as one or two way spanning floors. One way spanning ribbed floors are sometimes called troughed floors whereas the two way spanning ribbed floors are called coffered or waffle floors. Ribbed floors are usually cast against metal, glass fibre or polypropylene preformed moulds which are temporarily supported on plywood decking, joists and props — see page 378.

Typical Examples ~

ONE WAY SPANNING RIBBED OR TROUGHEd FLOOR

TWO WAY SPANNING COFFERED OR WAFFLE FLOOR
Ribbed Floors – these have greater span and load potential per unit weight than flat slab construction. This benefits a considerable reduction in dead load, to provide cost economies in other super-structural elements and foundations. The regular pattern of voids created with waffle moulds produces a honeycombed effect, which may be left exposed in utility buildings such as car parks. Elsewhere such as shopping malls, a suspended ceiling would be appropriate. The trough finish is also suitable in various situations and has the advantage of creating a continuous void for accommodation of service cables and pipes. A suspended ceiling can add to this space where air conditioning ducting is required, also providing several options for finishing effect.

Typical mould profile –

Note: After removing the temporary support structure, moulds are struck by flexing with a flat tool. A compressed air line is also effective.
Hollow Pot Floors — these are in essence a ribbed floor with permanent formwork in the form of hollow clay or concrete pots. The main advantage of this type of cast insitu floor is that it has a flat soffit which is suitable for the direct application of a plaster finish or an attached dry lining. The voids in the pots can be utilised to house small diameter services within the overall depth of the slab. These floors can be designed as one or two way spanning slabs, the common format being the one way spanning floor.

Typical Example —

![Diagram of Hollow Pot Floor with labels for slab, ribs, hollow pots, wide flat beam, internal column, perimeter column, floor screed, edge beam, ceiling finish, clay or precast concrete hollow pots, RC rib-span range, and typical section dimensions.]
Soffit and Beam Fixings — concrete suspended floors can be designed to carry loads other than the direct upper surface loadings. Services can be housed within the voids created by the beams or ribs and suspended or attached ceilings can be supported by the floor. Services which run at right angles to the beams or ribs are usually housed in cast-in holes. There are many types of fixings available for use in conjunction with floor slabs, some are designed to be cast-in whilst others are fitted after the concrete has cured. All fixings must be positioned and installed so that they are not detrimental to the structural integrity of the floor.

Typical Examples —
Precast Concrete Floors ~ these are available in several basic formats and provide an alternative form of floor construction to suspended timber floors and insitu reinforced concrete suspended floors. The main advantages of precast concrete floors are:

1. Elimination of the need for formwork except for nominal propping which is required with some systems.
2. Curing time of concrete is eliminated therefore the floor is available for use as a working platform at an earlier stage.
3. Superior quality control of product is possible with factory produced components.

The main disadvantages of precast concrete floors when compared with insitu reinforced concrete floors are:

1. Less flexible in design terms.
2. Formation of large openings in the floor for ducts, shafts and stairwells usually have to be formed by casting an insitu reinforced concrete floor strip around the opening position.
3. Higher degree of site accuracy is required to ensure that the precast concrete floor units can be accommodated without any alterations or making good

Typical Basic Formats ~

SOLID AERATED CONCRETE — usual application roof slabs.

HOLLOW BOX SECTIONS — spans up to 10.000
Typical Basic Formats ~

Precast Concrete Floors

- Structural concrete topping
- 450 to 800
- Floor finish
- 150 to 200
- Prestressed precast concrete inverted T beams
- Precast concrete or clay filler blocks or pots
- Ceiling finish
- PCC BEAM AND POT COMPOSITE FLOOR - max. span 7.500

- Structural concrete topping
- 650
- Floor finish
- 150 to 250
- Prestressed pcc planks with lattice reinforcement
- PCC PLANK AND POT COMPOSITE FLOOR - max. span 12000
- 400 to 1200
- Screed and finish

- Dry cast precast concrete cored units
- Ceiling finish
- PCC CORED UNITS - maximum span 10.000
- 100 to 250
- Grouted joints
- 300 to 400
- Screed and finish

- Precast concrete channel units
- Attached ceiling if required
- PCC CHANNEL UNITS - maximum span 6.750
Precast Concrete Floors

Bearing Considerations ~

STEEL SUPPORT CONCRETE SUPPORT MASONRY SUPPORT
NB. spalling to end of pcc unit and/or edge of support will reduce effective bearing length.

Lateral Restraint and Structural Continuity Considerations ~

Opening Considerations ~

small opening formed in body of pcc unit

large opening formed in cast in situ concrete panel or strip

cast in situ RC floor strip and beams

pcc floor units
Raised Flooring — developed in response to the high-tech boom of the 1970s. It has proved expedient in accommodating computer and communications cabling as well as numerous other established services. The system is a combination of adjustable floor pedestals, supporting a variety of decking materials. Pedestal height ranges from as little as 30mm up to about 600mm, although greater heights are possible at the expense of structural floor levels. Decking is usually in loose fit squares of 600mm, but may be sheet plywood or particleboard screwed direct to closer spaced pedestal support plates on to joists bearing on pedestals.

Application —

PEDESTAL DETAIL

- Carpet
- Steel encased chipboard decking panel
- 30-40mm depending on floor load
- Double layer of steel for fire resistance

FLOOR SECTION

- 600 or 750mm
- Decking panel
- Floor covering
- Adjustable prop
- Ventilation duct
- Cable tray
- Service pipes
- Structural floor
- 30 to 600mm
Sound Insulation ~ sound can be defined as vibrations of air which are registered by the human ear. All sounds are produced by a vibrating object which causes tiny particles of air around it to move in unison. These displaced air particles collide with adjacent air particles setting them in motion and in unison with the vibrating object. This continuous chain reaction creates a sound wave which travels through the air until at some distance the air particle movement is so small that it is inaudible to the human ear. Sounds are defined as either impact or airborne sound, the definition being determined by the source producing the sound. Impact sounds are created when the fabric of structure is vibrated by direct contact whereas airborne sound only sets the structural fabric vibrating in unison when the emitted sound wave reaches the enclosing structural fabric. The vibrations set up by the structural fabric can therefore transmit the sound to adjacent rooms which can cause annoyance, disturbance of sleep and of the ability to hold a normal conservation. The objective of sound insulation is to reduce transmitted sound to an acceptable level, the intensity of which is measured in units of decibels (dB).

The Building Regulations, Approved Document E: Resistance to the passage of sound, establishes sound insulation standards as follows:

E1: Between dwellings and between dwellings and other buildings.
E2: Within a dwelling, ie. between rooms, particularly WC and habitable rooms, and bedrooms and other rooms.
E3: Control of reverberation noise in common parts (stairwells and corridors) of buildings containing dwellings, ie. flats.
E4: Specific applications to acoustic conditions in schools.
Note: E1 includes, hotels, hostels, student accommodation, nurses’ homes and homes for the elderly, but not hospitals and prisons.

Typical Sources and Transmission of Sound ~
Separating Walls ~ types :-
1. Solid masonry
2. Cavity masonry
3. Masonry between isolating panels
4. Timber frame

Type 1 — relies on mass

<table>
<thead>
<tr>
<th>Material</th>
<th>Density of A (Kg/m³)</th>
<th>Finish B</th>
<th>Combined mass A + B (Kg/m²)</th>
<th>Thickness C [mm]</th>
<th>Coursing D [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>brickwork</td>
<td>1610</td>
<td>13 mm</td>
<td>375</td>
<td>215</td>
<td>75</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>12.5 mm</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Concrete block</td>
<td>1840</td>
<td>13 mm</td>
<td>415</td>
<td>...</td>
<td>110</td>
</tr>
<tr>
<td>...</td>
<td>1840</td>
<td>12.5 mm</td>
<td>...</td>
<td>...</td>
<td>150</td>
</tr>
<tr>
<td>Insitu concrete</td>
<td>2200</td>
<td>Optional</td>
<td>415</td>
<td>190</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Type 2 — relies on mass and isolation

<table>
<thead>
<tr>
<th>Material</th>
<th>Density of A (Kg/m³)</th>
<th>Finish B</th>
<th>Mass A + B (Kg/m²)</th>
<th>Thickness C [mm]</th>
<th>Coursing D [mm]</th>
<th>Cavity E [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>bkwk.</td>
<td>1970</td>
<td>13 mm</td>
<td>415</td>
<td>102</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>concrete block</td>
<td>1990</td>
<td>..</td>
<td>..</td>
<td>100</td>
<td>225</td>
<td>..</td>
</tr>
<tr>
<td>lwt. conc. block</td>
<td>1375</td>
<td>.. or 12.5 mm</td>
<td>300</td>
<td>100</td>
<td>225</td>
<td>75</td>
</tr>
</tbody>
</table>
Sound Insulation—Walls

Type 3 ~ relies on: (a) core material type and mass, (b) isolation, and (c) mass of isolated panels.

<table>
<thead>
<tr>
<th>Core material A</th>
<th>Density of A [kg/m3]</th>
<th>Mass A [kg/m2]</th>
<th>Thickness C (mm)</th>
<th>Coursing D (mm)</th>
<th>Cavity (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>brickwork</td>
<td>1290</td>
<td>300</td>
<td>215</td>
<td>75</td>
<td>n/a</td>
</tr>
<tr>
<td>concrete block</td>
<td>2200</td>
<td>300</td>
<td>140</td>
<td>110</td>
<td>n/a</td>
</tr>
<tr>
<td>lwt. conc. block</td>
<td>1400</td>
<td>150</td>
<td>200</td>
<td>225</td>
<td>n/a</td>
</tr>
<tr>
<td>Cavity bkwn. or block</td>
<td>any</td>
<td>any</td>
<td>2 x 100</td>
<td>to suit</td>
<td>50</td>
</tr>
</tbody>
</table>

Panel materials — B

(i) Plasterboard with cellular core plus plaster finish, mass 18 kg/m2. All joints taped. Fixed floor and ceiling only.
(ii) 2 No. plasterboard sheets, 12.5 mm each, with joints staggered. Frame support or 30 mm overall thickness.

Type 4 — relies on mass, frame separation and absorption of sound.

Absorbent material — quilting of unfaced mineral fibre batts with a minimum density of 10 kg/m3, located in the cavity or frames.

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Suspended in cavity</td>
</tr>
<tr>
<td>50</td>
<td>Fixed within one frame</td>
</tr>
<tr>
<td>2 x 25</td>
<td>Each quilt fixed within each frame</td>
</tr>
</tbody>
</table>
Separating Floors ~ types:-

1. Concrete with soft covering
2. Concrete with floating layer
3. Timber with floating layer

Type 1. Airborne resistance depends on mass of concrete and ceiling.
Impact resistance depends on softness of covering.

Type 2. Airborne resistance depends mainly on concrete mass and partly on mass of floating layer and ceiling.
Impact resistance depends on resilient layer isolating floating layer from base and isolation of ceiling.

Bases: As type 1. but overall mass minimum 300 kg/m².

Floating layers:
- 18mm t & g timber (min. 12kg/m²)
 or wood based boarding on 45 × 45mm battens
- 65mm screed (min. 80kg/m²)

Resilient layers:
(a) 25mm paper faced mineral fibre, density 36kg/m³.
 Timber floor – paper faced underside.
 Screeded floor – paper faced upper side to prevent screed entering layer.
(b) Screeded floor only:
 13mm pre-compressed expanded polystyrene (EPS) board, or 5mm extruded polyethylene foam of density 30–45kg/m³, laid over a levelling screed for protection. (BS EN 29052-1).
Type 3. Airborne resistance varies depending on floor construction, absorbency of materials, extent of pugging and partly on the floating layer. Impact resistance depends mainly on the resilient layer separating floating from structure.

Platform floor ~

Note: Minimum mass per unit area = 25kg/m2

Floating layer: 18mm timber or wood based board, t&g joints glued and spot bonded to a sub-strate of 19mm plasterboard. Alternatively, cement bonded particle board in 2 thicknesses – 24mm total, joints staggered, glued and screwed together.

Resilient layer: 25mm mineral fibre, density 60–100kg/m3.

Base: 12mm timber boarding or wood based board nailed to joists.

Absorbent material: 100mm unfaced rock fibre, minimum density 10kg/m3.

Ceiling: 30mm plasterboard in 2 layers, joints staggered.

Ribbed floor ~

Ribbed floor with dry sand pugging ~

Alternative

50mm dry sand pugging, 80 kg/m2 min. not suitable in damp situations, e.g. bathrooms, kitchens, etc.
Primary Functions ~
1. Provide a means of circulation between floor levels.
2. Establish a safe means of travel between floor levels.
3. Provide an easy means of travel between floor levels.
4. Provide a means of conveying fittings and furniture between floor levels.

Constituent Parts ~

- upper newel post - notched over joist
- handrail - spans between newel posts
- wall string - fixed to wall
- bottom newel post - rests on floor
- tread - spans between strings
- riser - infill between treads
- margin piece
- apron lining
- balusters forming infill between string and handrail
- outer string - spans between newel posts
- string capping - provides seating for balusters

STRAIGHT FLIGHT STAIRS
All dimensions quoted are the minimum required for domestic stairs exclusive to one dwelling as given in Approved Document K unless stated otherwise.

Terminology ~

- **pitch line**: the line joining nosings
- **aggregate of going + twice rise of a step to be 550 min. and 700 max.**
- **riser + tread = step**
- **handrail**: must provide adequate support and is required where total rise exceeds 600mm and to both sides if width exceeds 1,000
- **minimum headroom**: 2,000
- **recommended floor to floor height**: 2,600
- **no openings which will allow a 100mm sphere to pass through**
- **maximum pitch 42°**
Step Formats ~

- square nosing
- splayed nosing
- rounded nosing

- butt joint
- rebate joint
- housing joint

NB. nosing types and joints are interchangeable between step formats

string position

25 to 38 mm thick treads

glued triangulated brackets on centre line of stairs

15 mm deep housings

12 to 20 mm thick risers

triangular glue blocks

25 to 38 mm thick string

STAIR FLIGHT CONSTRUCTION
Bottom Step Arrangements ~

Projecting bottom steps are usually included to enable the outer string to be securely jointed to the back face of the newel post and to provide an easy line of travel when ascending or descending at the foot of the stairs.

Typical Detail at Bottom Newel Post
Straight Flight Timber Stair Details

TYPICAL DETAIL AT TOP NEWEL POST

- 38 x 20 balusters
- 25mm thick string capping
- 100 x 100 newel post notched 15mm over trimmer
- t & g flooring
- trimmed joist
- trimmed pendant
- packing or folding wedges
- plasterboard or similar soffit

TYPICAL DETAILS AT LANDING AND STAIRWELL

- skirting
- landing
- wall string hooked over trimmer
- rebated nosing
- packing
- tread
- riser
- plasterboard or similar soffit
- rebated nosing to match stairs
- t & g flooring
- common floor joist
- packing
- trimming joist
- plasterboard or similar soffit
- 12 to 20mm thick apron lining
- cover fillet
Open Riser Timber Stairs ~ these are timber stairs constructed to the same basic principles as standard timber stairs excluding the use of a riser. They have no real advantage over traditional stairs except for the generally accepted aesthetic appeal of elegance. Like the traditional timber stairs they must comply with the minimum requirements set out in Part K of the Building Regulations.

Typical Requirements for Stairs in a Small Residential Building ~

- Maximum pitch 42°
- Minimum headroom 2,000 mm
- Minimum going 220 mm
- Minimum overlap 16 mm
- Rise - 220 mm max.
- No opening which will allow a 100 mm diameter sphere to pass through
- Outer string
- Newel post
- Handrail
- Wall string hooked over landing trimmer
- Minimum clear width of stairs - 800 mm
- Aggregate of going plus twice the rise to be 550 mm minimum and 700 mm maximum
Design and Construction ~ because of the legal requirement of not having a gap between any two consecutive treads through which a 100mm diameter sphere can pass and the limitation relating to the going and rise, as shown on the previous page, it is generally not practicable to have a completely riserless stair for residential buildings since by using minimum dimensions a very low pitch of approximately $27\frac{1}{2}^\circ$ would result and by choosing an acceptable pitch a very thick tread would have to be used to restrict the gap to 100mm.

Possible Solutions ~
Application — a straight flight for access to a domestic loft conversion only. This can provide one habitable room, plus a bathroom or WC. The WC must not be the only WC in the dwelling.

Practical issues — an economic use of space, achieved by a very steep pitch of about 60° and opposing overlapping treads.

Safety — pitch and tread profile differ considerably from other stairs, but they are acceptable to Building Regulations by virtue of “familiarity and regular use” by the building occupants.

Additional features are:

* a non-slip tread surface.
* handrails to both sides.
* minimum going 220 mm.
* maximum rise 220 mm.
* \((2 \times \text{rise}) + (\text{going})\) between 550 and 700 mm.
* a stair used by children under 5 years old, must have the tread voids barred to leave a gap not greater than 100 mm.

Ref. Building Regulations, Approved Document K1: Stairs, ladders and ramps: Section 1.29
Timber Stairs ~ these must comply with the minimum requirements set out in Part K of the Building Regulations. Straight flight stairs are simple, easy to construct and install but by the introduction of intermediate landings stairs can be designed to change direction of travel and be more compact in plan than the straight flight stairs.

Landings ~ these are designed and constructed in the same manner as timber upper floors but due to the shorter spans they require smaller joist sections. Landings can be detailed for a 90° change of direction (quarter space landing) or a 180° change of direction (half space landing) and can be introduced at any position between the two floors being served by the stairs.

Typical Layouts ~

![Timber Stairs with Landings Diagram]

- **Quarter Space Landing Stair**: Shows the basic layout with a quarter space landing between the upper and lower flights.
- **Dog Leg Stair**: Demonstrates a more complex layout with a change in direction at the middle flight.
- **Open Newel Stairs**: Illustrates stairs with open risers and landings.
Timber Stairs with Landings

- half pendant newel post fixed to wall to receive upper floor landing handrail
- pendant newel post notched over trimmer joist
- handrail and balusters
- half space landing
- skirting
- treads and risers forming upper flight
- storey height newel post
- handrail of lower flight abuts to the underside of outer string of upper string
- rebated nosing
- wall string of lower flight
- riser
- tread
- string capping
- bottom newel post
- splayed bottom step

TYPICAL DOG LEG OR STRING OVER STRING STAIRS
Insitu Reinforced Concrete Stairs — a variety of stair types and arrangements are possible each having its own appearance and design characteristics. In all cases these stairs must comply with the minimum requirements set out in Part K of the Building Regulations in accordance with the purpose group of the building in which the stairs are situated.

Typical Examples —

INCLINED SLAB STAIR
- Landings span from well edge to load bearing wall
- Stair flights span from floor to landing and from landing to floor

For detailed example see page 610

CRANKED SLAB STAIR
- Stair flights span as a cranked slab from floor to landing edge beam and from landing edge beam to floor
- If no structural support is given at landing levels stairs are called a continuous slab or scissor stair
Typical Examples ~

STRING BEAM STAIR
- Landings span from well edge beam to load bearing wall.
- String beams span from floor to landing and from landing to floor.
- Stair flights span from string beam to load bearing wall or from string beam to string beam.

CANTILEVER STAIR
- Landings cantilever on both sides of a stub beam which is a cantilever beam out of the rear edge of the spine wall.
- Stair flights are cantilever flights about the spine wall.
Spiral and Helical Stairs ~ these stairs constructed in insitu reinforced concrete are considered to be aesthetically pleasing but are expensive to construct. They are therefore mainly confined to prestige buildings usually as accommodation stairs linking floors within the same compartment. Like all other forms of stair they must conform to the requirements of Part K of the Building Regulations and if used as a means of escape in case of fire with the requirements of Part B. Spiral stairs can be defined as those describing a helix around a central column whereas a helical stair has an open well. The open well of a helical stair is usually circular or elliptical in plan and the formwork is built up around a vertical timber core.

Typical Example of a Helical Stair ~
NB. in plan the risers in the upper flight are not in line with those in the lower flight. This is to ensure that the soffits of the two flights line through at their intersection with the soffit of the half space landing.
Insitu Reinforced Concrete Stair Formwork — in specific detail the formwork will vary for the different types of reinforced concrete stair but the basic principles for each format will remain constant.

Typical RC Stair Formwork Details — (see page 610 for Key Plan)
Precast Concrete Stairs — these can be produced to most of the formats used for insitu concrete stairs and like those must comply with the appropriate requirements set out in Part K of the Building Regulations. To be economic the total production run must be sufficient to justify the costs of the moulds and therefore the designers choice may be limited to the stair types which are produced as a manufacturer’s standard item.

Precast concrete stairs can have the following advantages:-

1. Good quality control of finished product.
2. Saving in site space since formwork fabrication and storage will not be required.
3. The stairs can be installed at any time after the floors have been completed thus giving full utilisation to the stair shaft as a lifting or hoisting space if required.
4. Hoisting, positioning and fixing can usually be carried out by semi-skilled labour.

Typical Example — Straight Flight Stairs

![Diagram of precast concrete stairs with labels for return flight, tread or going, rise, insitu RC landing or floor, waist, precast concrete stair, 10 mm wide joint with flexible filler, insitu landing or floor, 100 mm long bearing nib, and floor junction detail.]
Typical Example ~ Cranked Slab Stairs

- **upper return flight**
- **tread or going**
- **rise**
- **insitu RC floor with rebated edge beam**
- **waist**
- **precast concrete stair flight and landings**
- **lower return flight**

LANDING SUPPORT DETAIL

- **insitu RC rebated landing edge support beam**
- **upper return flight**
- **insitu landing edge support beam**
- **10 mm wide joint with flexible filler**
- **main bars**
- **100 mm wide rebated bearing with packing if required**
- **distribution bars**
Typical Example ~ Spine Beam Stairs with Open Risers

Precast Concrete Stairs

double cantilever treads of precast concrete or a suitable hardwood timber ends of spine beams housed in pockets cast into face of floor or landing beams

return flight

double cantilever precast concrete tread bolted to precast concrete spine with 2 No. fixing bolts

fixing bolts cast into spine beam

foot of spine beam housed in pocket cast into ground floor slab

waist

precast concrete spine beam

ground floor slab

damp-proof membrane

insitu RC landing edge beam

precast concrete double cantilever tread

reinforcement

fixing bolt slot made good

2 No. cast-in fixing bolts per tread

reinforcement to waist of spine beam

TYPICAL SECTION
Precast Concrete Spiral Stairs ~ this form of stair is usually constructed with an open riser format using tapered treads which have a keyhole plan shape. Each tread has a hollow cylinder at the narrow end equal to the rise which is fitted over a central steel column usually filled with insitu concrete. The outer end of the tread has holes through which the balusters pass to be fixed on the underside of the tread below, a hollow spacer being used to maintain the distance between consecutive treads.

Typical Example ~
Metal Stairs ~ these can be produced in cast iron, mild steel or aluminium alloy for use as escape stairs or for internal accommodation stairs. Most escape stairs are fabricated from cast iron or mild steel and must comply with the Building Regulation requirements for stairs in general and fire escape stairs in particular. Most metal stairs are purpose made and therefore tend to cost more than comparable concrete stairs. Their main advantage is the elimination of the need for formwork whilst the main disadvantage is the regular maintenance in the form of painting required for cast iron and mild steel stairs.

Typical Example ~ Straight Flight Steel External Escape Stair
Typical Examples ~ Steel Spiral Stairs

40 x 20 convex polished metal handrail
25 x 25 landing newel
20 x 20 baluster
floor
12mm diameter pin
tread unit
60mm diameter tube
riser leg relieved for easy maintenance
nut and washer to secure pin under lower tread unit
grip pattern
hole for central tube
pin central tube holes
assembly details

ELEVATION

square steel plate landing
square plan shape stairwell formed in structural floor with 75mm minimum clearance to edge of steel stairs
balustrade and handrail

PLAN

NB. treads can be left hand right hand with 12 or 16 riser per circle
Typical Examples ~ Steel String Stairs

- Balustrade fixed to treads
- Collar
- Fixing nut

50mm thick hardwood or 65mm thick precast concrete treads fixed to brackets

Bracket

2 No. channel section string beams bolted to floors and landings with web cleats

Weld

String

ELEVATION

SECTION

Balustrade fixed to treads

Collar

Fixing nut

Tread

Angle bracket welded to face of string

String

Overlap of treads = 25mm

2 No. steel box section string beams bolted to floors and landings with angle cleats
Balustrades and Handrails ~ these must comply in all respects with the requirements given in Part K of the Building Regulations and in the context of escape stairs are constructed of a non-combustible material with a handrail shaped to give a comfortable hand grip. The handrail may be covered or capped with a combustible material such as timber or plastic. Most balustrades are designed to be fixed after the stairs have been cast or installed by housing the balusters in a preformed pocket or by direct surface fixing.

Typical Details ~

- removable snap on plastic handrail cover
- moulded and polished hardwood handrail screwed from lower face of metal rail
- metal top rail welded or screwed to standards
- metal rails slotted to take standards fillet welded on underside
- cover plate welded to standard
- standard or baluster
- cover plate if required
- matching cement mortar filling
- run lead or cement grout filling
- ragged or deformed end of baluster or standard
- pockets formed in concrete to receive ends of standards
Functions - the main functions of any door are to:
1. Provide a means of access and egress.
2. Maintain continuity of wall function when closed.
3. Provide a degree of privacy and security.

Choice of door type can be determined by:
1. Position - whether internal or external.
2. Properties required - fire resistant, glazed to provide for borrowed light or vision through, etc.
3. Appearance - flush or panelled, painted or polished, etc.

Door Schedules - these can be prepared in the same manner and for the same purpose as that given for windows on page 350.

Internal Doors - these are usually lightweight and can be fixed to a lining, if heavy doors are specified these can be hung to frames in a similar manner to external doors. An alternative method is to use door sets which are usually storey height and supplied with prehung doors.

Typical door Lining Details -

![Typical Door Lining Diagram]

- **Head**: Housed joint
- **Width = Wall thickness + wall finishes**
- **21 or 27mm**
- **Temporary bracing to one or both sides**
- **Jamb**
- **70 x 20 architrave**
- **Temporary strutting**
- **Packing as necessary**
- **Internal wall**
- **Internal flush door**
- **35 x 12 planted stop**
- **Door lining fixed to wall**
Internal Doors ~ these are similar in construction to the external doors but are usually thinner and therefore lighter in weight.

Typical Examples ~

FLUSH DOOR
- **Width Range**: 305 to 838
- **Height Range from**: 1829 to 2032
- **Facing Materials**:
 - Hardboard plywood
 - Laminated plastic
- **Solid or Skeleton Frame Core**
- **Edge Lipping**

GLAZED FLUSH DOOR
- **Common Internal Door Size**
 1. **Height**: 1981 mm
 2. **Width**: 762 mm
- **Glazed**
 - 450 x 450 mm observation panel
- **Facing Materials**:
 - Hardboard plywood
- **Edge Lipping**

LOUVRED DOOR
- **Top Rail**
- **Stile**
- **Lock Rail**
- **Bottom Rail**
- **Clear or Obscure Glazing** in small panes
- **Panels of Narrow Width Louvres**

GLAZED DOOR
- **Top Rail**
- **Stile**
- **Glazing Bars**
- **Bottom Rail**
Internal Door Frames and linings — these are similar in construction to external door frames but usually have planted door stops and do not have a sill. The frames sized to be built in conjunction with various partition thicknesses and surface finishes. Linings with planted stops are usually employed for lightweight domestic doors.

Typical Examples ~

Ref. BS 4787: Internal and external wood doorsets, door leaves and frames. Specification for dimensional requirements.
Doorsets ~ these are factory produced fully assembled prehung doors which are supplied complete with frame, architraves and ironmongery except for door furniture. The doors may be hung to the frames using pin butts for easy door removal. Prehung door sets are available in standard and storey height versions and are suitable for all internal door applications with normal wall and partition thicknesses.

Typical Examples ~

![Diagram showing standard and storey height doorsets]
Fire doorset ~ a "complete unit consisting of a door frame and a door leaf or leaves, supplied with all essential parts from a single source". The difference between a doorset and a fire doorset is the latter is endorsed with a fire certificate for the complete unit. When supplied as a collection of parts for site assembly, this is known as a door kit.

Fire door assembly ~ a "complete assembly as installed, including door frame and one or more leaves, together with its essential hardware [ironmongery] supplied from separate sources". Provided the components to an assembly satisfy the Building Regulations — Approved Document B, fire safety requirements and standards for certification and compatibility, then a fire door assembly is an acceptable alternative to a doorset.

Fire doorsets are usually more expensive than fire door assemblies, but assemblies permit more flexibility in choice of components. Site fixing time will be longer for assemblies.

(Quotes from BS EN 12519: Windows and pedestrian doors. Terminology.)

Fire door ~ a fire door is not just the door leaf. A fire door includes the frame, ironmongery, glazing, intumescent core and smoke seal. To comply with European market requirements, ironmongery should be CE marked (see page 58). A fire door should also be marked accordingly on the top or hinge side. The label type shown below, reproduced with kind permission of the British Woodworking Federation is acceptable.
Half Hour Flush Fire Doors - these are usually based on the recommendations given in BS 8214. A wide variety of door constructions are available from various manufacturers but they all have to be fitted to a similar frame for testing as a doorset or assembly, including ironmongery.

A door's resistance to fire is measured by:-

1. Insulation — resistance to thermal transmittance, see BS 476-20 & 22: Fire tests on building materials and structures.
2. Integrity — resistance in minutes to the penetration of flame and hot gases under simulated fire conditions.

Typical Details ~

![Diagram of a door frame and section]

DOOR FRAME DETAIL
- 45mm deep intermediate rail
- plasterboard lining 9.5mm thick to both faces
- third hinge optional
- 165mm deep lock or middle rail
- lipping to both edges
- 83 x 38 framing
- 3mm thick plywood facing
- steel or brass butt hinges

Glass Panel — can be included if 6mm thick wired glass with a maximum size of 1.2 m² is used. Glass to be fixed with non-combustible beads with a melting point of ≥ 900 °C.

NB. intumescent strips in door edges provide an enhanced rating - see page 627
One Hour Flush Fire Door ~ like the half hour flush fire door shown on page 625 these doors are based on the recommendations given in BS 8214 which covers both door and frame. A wide variety of door constructions are available from various manufacturers but most of these are classified as a one hour fire resistant door with both insulation and integrity ratings of 60 minutes.

Typical Details ~

SECTIONAL ELEVATION
NB. intumescent strips in door edges and frame rebate would give above door an enhanced rating ~ see next page.

Glass Panel - can be included if 6mm thick wired glass with a maximum size of 0.5 m² is used. Glass to be fixed with non-combustible beads with a melting point of < 900°C

Ref. BS 8214 : Code of practice for fire door assemblies with non-metallic leaves.
Fire and Smoke Resistance ~ Doors can be assessed for both integrity and smoke resistance. They are coded accordingly, for example FD30 or FD30s. FD indicates a fire door and 30 the integrity time in minutes. The letter 's' denotes that the door or frame contains a facility to resist the passage of smoke.

Manufacturers produce doors of standard ratings — 30, 60 and 90 minutes, with higher ratings available to order. A colour coded plug inserted in the door edge corresponds to the fire rating. See BS 8214, Table 1 for details.

Intumescent Fire and Smoke Seals ~

The intumescent core may be fitted to the door edge or the frame. In practice, most joinery manufacturers leave a recess in the frame where the seal is secured with rubber based or PVA adhesive. At temperatures of about 150°C, the core expands to create a seal around the door edge. This remains throughout the fire resistance period whilst the door can still be opened for escape and access purposes. The smoke seal will also function as an effective draught seal.

Further references:
BS EN 1634-1: Fire resistance tests for door and shutter assemblies. Fire doors and shutters.
BS EN 13501: Fire classification of construction products and building elements.
Glazed Double Swing Doors

Typical Details ~

ex. 100 x 75 rectangular section
door frame head

ex. 100 x 50
door head

ex. 100 x 50
meeting stiles

door jamb
with curved recess for
rounded edge of door stile

edges of door can be fitted
with draught excluder with
or without an
intumescent strip insert

ex. 100 x 50
door stile

channel shoe
recessed
flush with
door face

ex. 200 x 50
bottom rail

skirting

double action floor spring
loose box sunk into floor

ELEVATION

meeting stile radius

meeting stiles

3mm max.
screw to raise
and lower pivot pin

SECTION

upper part of top
centre recessed
into head of
door frame

pivot pin

lower part of
top centre recessed
into door head

DOUBLE ACTION FLOOR SPRING

TOP CENTRE
Plasterboard ~ this is a rigid board made with a core of gypsum sandwiched between face sheets of strong durable paper. In the context of ceilings two sizes can be considered —

1. Baseboard 2.400 x 1.200 x 9.5mm thick for supports at centres not exceeding 400mm; 2.400 x 1.200 x 12.5mm for supports at centres not exceeding 600mm. Baseboard has square edges and therefore the joints will need reinforcing with jute scrim at least 90mm wide or alternatively a special tape to prevent cracking.

2. Gypsum Lath 1.200 x 406 x 9.5 or 12.5mm thick. Lath has rounded edges which eliminates the need to reinforce the joints.

Baseboard is available with a metallized polyester facing which acts as a vapour control layer to prevent moisture penetrating the insulation and timber, joints should be sealed with an adhesive metallized tape.

The boards are fixed to the underside of the floor or ceiling joists with galvanised or sheradised plasterboard nails at not more than 150mm centres and are laid breaking the joint. Edge treatments consist of jute scrim or plastic mesh reinforcement or a preformed plaster cove moulding.

Typical details ~

- [Diagram showing plasterboard ceiling installation details]
- [Instructions for fixing and edge treatments]
Suspended Ceilings ~ these can be defined as ceilings which are fixed to a framework suspended from main structure thus forming a void between the two components. The basic functional requirements of suspended ceilings are:

1. They should be easy to construct, repair, maintain and clean.
2. So designed that an adequate means of access is provided to the void space for the maintenance of the suspension system, concealed services and/or light fittings.
3. Provide any required sound and/or thermal insulation.
4. Provide any required acoustic control in terms of absorption and reverberation.
5. Provide if required structural fire protection to structural steel beams supporting a concrete floor.
6. Conform with the minimum requirements set out in the Building Regulations and in particular the regulations governing the restriction of spread of flame over surfaces of ceilings and the exceptions permitting the use of certain plastic materials.
7. Design to be based on a planning module preferably a dimensional coordinated system with a first preference module of 300mm.

Typical Suspended Ceiling Grid Framework Layout ~
Classification of Suspended Ceiling ~ there is no standard method of classification since some are classified by their function such as illuminated and acoustic suspended ceilings, others are classified by the materials used and classification by method of construction is also very popular. The latter method is simple since most suspended ceiling types can be placed in one of three groups:-

1. Jointless suspended ceilings.
2. Panelled suspended ceilings — see page 632.
3. Decorative and open suspended ceilings — see page 633.

Jointless Suspended Ceilings ~ these forms of suspended ceilings provide a continuous and jointless surface with the internal appearance of a conventional ceiling. They may be selected to fulfil fire resistance requirements or to provide a robust form of suspended ceiling. The two common ways of construction are a plasterboard or expanded metal lathing soffit with hand applied plaster finish or a sprayed applied rendering with a cement base.

Typical Details ~
Panelled Suspended Ceilings — these are the most popular form of suspended ceiling consisting of a suspended grid framework to which the ceiling covering is attached. The covering can be of a tile, tray, board or strip format in a wide variety of materials with an exposed or concealed supporting framework. Services such as luminaries can usually be incorporated within the system. Generally panelled systems are easy to assemble and install using a water level or laser beam for initial and final levelling. Provision for maintenance access can be easily incorporated into most systems and layouts.

Typical Support Details ~
Decorative and Open Suspended Ceilings ~ these ceilings usually consist of an openwork grid or suspended shapes onto which the lights fixed at, above or below ceiling level can be trained thus creating a decorative and illuminated effect. Many of these ceilings are purpose designed and built as opposed to the proprietary systems associated with jointless and panelled suspended ceilings.

Typical Examples ~
Functions ~ the main functions of paint are to provide:-

1. An economic method of surface protection to building materials and components.
2. An economic method of surface decoration to building materials and components.

Composition ~ the actual composition of any paint can be complex but the basic components are:-

1. Binder ~ this is the liquid vehicle or medium which dries to form the surface film and can be composed of linseed oil, drying oils, synthetic resins and water. The first function of a paint medium is to provide a means of spreading the paint over the surface and at the same time acting as a binder to the pigment.

2. Pigment ~ this provides the body, colour, durability and corrosion protection properties of the paint. White lead pigments are very durable and moisture resistant but are poisonous and their use is generally restricted to priming and undercoating paints. If a paint contains a lead pigment the fact must be stated on the container. The general pigment used in paint is titanium dioxide which is not poisonous and gives good obliteration of the undercoats.

3. Solvents and Thinners ~ these are materials which can be added to a paint to alter its viscosity.

Paint Types ~ there is a wide range available but for most general uses the following can be considered:-

1. Oil Based paints ~ these are available in priming, undercoat and finishing grades. The latter can be obtained in a wide range of colours and finishes such as matt, semi-matt, eggshell, satin, gloss and enamel. Polyurethane paints have a good hardness and resistance to water and cleaning. Oil based paints are suitable for most applications if used in conjunction with correct primer and undercoat.

2. Water Based Paints ~ most of these are called emulsion paints the various finishes available being obtained by adding to the water medium additives such as alkyd resin & polyvinyl acetate (PVA). Finishes include matt, eggshell, semi-gloss and gloss. Emulsion paints are easily applied, quick drying and can be obtained with a washable finish and are suitable for most applications.
Supply ~ paint is usually supplied in metal containers ranging from 250 millilitres to 5 litres capacity to the colour ranges recommended in BS 381C (colours for specific purposes) and BS 4800 (paint colours for building purposes).

Application ~ paint can be applied to almost any surface providing the surface preparation and sequence of paint coats are suitable. The manufacturers specification and/or the recommendations of BS 6150 (painting of buildings) should be followed. Preparation of the surface to receive the paint is of the utmost importance since poor preparation is one of the chief causes of paint failure. The preparation consists basically of removing all dirt, grease, dust and ensuring that the surface will provide an adequate key for the paint which is to be applied. In new work the basic build-up of paint coats consists of:-

1. Priming Coats — these are used on unpainted surfaces to obtain the necessary adhesion and to inhibit corrosion of ferrous metals. New timber should have the knots treated with a solution of shellac or other alcohol based resin called knotting prior to the application of the primer.

2. Undercoats — these are used on top of the primer after any defects have been made good with a suitable stopper or filler. The primary function of an undercoat is to give the opacity and build-up necessary for the application of the finishing coat(s).

3. Finish — applied directly over the undercoating in one or more coats to impart the required colour and finish.

Paint can applied by:-

1. Brush — the correct type, size and quality of brush such as those recommended in BS 2992 needs to be selected and used. To achieve a first class finish by means of brush application requires a high degree of skill.

2. Spray — as with brush application a high degree of skill is required to achieve a good finish. Generally compressed air sprays or airless sprays are used for building works.

3. Roller — simple and inexpensive method of quickly and cleanly applying a wide range of paints to flat and textured surfaces. Roller heads vary in size from 50 to 450mm wide with various covers such as sheepskin, synthetic pile fibres, mohair and foamed polystyrene. All paint applicators must be thoroughly cleaned after use.
Painting — the main objectives of applying coats of paint to a surface are preservation, protection and decoration to give a finish which is easy to clean and maintain. To achieve these objectives the surface preparation and paint application must be adequate. The preparation of new and previously painted surfaces should ensure that prior to painting the surface is smooth, clean, dry and stable.

Basic Surface Preparation Techniques —

Timber — to ensure a good adhesion of the paint film all timber should have a moisture content of less than 18%. The timber surface should be prepared using an abrasive paper to produce a smooth surface brushed and wiped free of dust and any grease removed with a suitable spirit. Careful treatment of knots is essential either by sealing with two coats of knotting or in extreme cases cutting out the knot and replacing with sound timber. The stopping and filling of cracks and fixing holes with putty or an appropriate filler should be carried out after the application of the priming coat. Each coat of paint must be allowed to dry hard and be rubbed down with a fine abrasive paper before applying the next coat. On previously painted surfaces if the paint is in a reasonable condition the surface will only require cleaning and rubbing down before repainting, when the paint is in a poor condition it will be necessary to remove completely the layers of paint and then prepare the surface as described above for new timber.

Building Boards — most of these boards require no special preparation except for the application of a sealer as specified by the manufacturer.

Iron and Steel — good preparation is the key to painting iron and steel successfully and this will include removing all rust, mill scale, oil, grease and wax. This can be achieved by wire brushing, using mechanical means such as shot blasting, flame cleaning and chemical processes and any of these processes are often carried out in the steel fabrication works prior to shop applied priming.

Plaster — the essential requirement of the preparation is to ensure that the plaster surface is perfectly dry, smooth and free of defects before applying any coats of paint especially when using gloss paints. Plaster which contains lime can be alkaline and such surfaces should be treated with an alkali resistant primer when the surface is dry before applying the final coats of paint.
Paint Defects — these may be due to poor or incorrect preparation of the surface, poor application of the paint and/or chemical reactions. The general remedy is to remove all the affected paint and carry out the correct preparation of the surface before applying in the correct manner new coats of paint. Most paint defects are visual and therefore an accurate diagnosis of the cause must be established before any remedial treatment is undertaken.

Typical Paint Defects —

1. Bleeding — staining and disruption of the paint surface by chemical action, usually caused by applying an incorrect paint over another. Remedy is to remove affected paint surface and repaint with correct type of overcoat paint.

2. Blistering — usually caused by poor presentation allowing resin or moisture to be entrapped, the subsequent expansion causing the defect. Remedy is to remove all the coats of paint and ensure that the surface is dry before repainting.

3. Blooming — mistiness usually on high gloss or varnished surfaces due to the presence of moisture during application. It can be avoided by not painting under these conditions. Remedy is to remove affected paint and repaint.

4. Chalking — powdering of the paint surface due to natural ageing or the use of poor quality paint. Remedy is to remove paint if necessary, prepare surface and repaint.

5. Cracking and Crazing — usually due to unequal elasticity of successive coats of paint. Remedy is to remove affected paint and repaint with compatible coats of paint.

6. Flaking and Peeling — can be due to poor adhesion, presence of moisture, painting over unclean areas or poor preparation. Remedy is to remove defective paint, prepare surface and repaint.

7. Grinning — due to poor opacity of paint film allowing paint coat below or background to show through, could be the result of poor application: incorrect thinning or the use of the wrong colour. Remedy is to apply further coats of paint to obtain a satisfactory surface.

8. Saponification — formation of soap from alkali present in or on surface painted. The paint is ultimately destroyed and a brown liquid appears on the surface. Remedy is to remove the paint films and seal the alkaline surface before repainting.
Joinery Production - this can vary from the flow production where one product such as flush doors is being made usually with the aid of purpose designed and built machines, to batch production where a limited number of similar items are being made with the aid of conventional woodworking machines. Purpose made joinery is very often largely hand made with a limited use of machines and is considered when special and/or high class joinery components are required.

Woodworking Machines - except for the portable electric tools such as drills, routers, jigsaws and sanders most woodworking machines need to be fixed to a solid base and connected to an extractor system to extract and collect the sawdust and chippings produced by the machines.

Saws - basically three formats are available, namely the circular, cross cut and band saws. Circular are general purpose saws and usually have tungsten carbide tipped teeth with feed rates of up to 60 000 per minute. Cross cut saws usually have a long bench to support the timber, the saw being mounted on a radial arm enabling the circular saw to be drawn across the timber to be cut. Band saws consist of an endless thin band or blade with saw teeth and a table on which to support the timber and are generally used for curved work.

Planers - most of these machines are combined planers and thicknessers, the timber being passed over the table surface for planning and the table or bed for thicknessing. The planer has a guide fence which can be tilted for angle planing and usually the rear bed can be lowered for rebating operations. The same rotating cutter block is used for all operations. Planing speeds are dependent upon the operator since it is a hand fed operation whereas thicknessing is mechanically fed with a feed speed range of 6 000 to 20 000 per minute. Maximum planing depth is usually 10mm per passing.

Morticing Machines - these are used to cut mortices up to 25mm wide and can be either a chisel or chain morticer. The former consists of a hollow chisel containing a bit or auger whereas the latter has an endless chain cutter.

Tenoning Machines - these machines with their rotary cutter blocks can be set to form tenon and scribe. In most cases they can also be set for trenching, grooving and cross cutting.

Spindle Moulder - this machine has a horizontally rotating cutter block into which standard or purpose made cutters are fixed to reproduce a moulding on timber passed across the cutter.
Purpose Made Joinery ~ joinery items in the form of doors, windows, stairs and cupboard fitments can be purchased as stock items from manufacturers. There is also a need for purpose made joinery to fulfil client/designer/user requirement to suit a specific need, to fit into a non-standard space, as a specific decor requirement or to complement a particular internal environment. These purpose made joinery items can range from the simple to the complex which require high degrees of workshop and site skills.

Typical Purpose Made Counter Details ~

- blockboard counter top with veneer, leather or similar finish
- veneer band
- timber band
- veneer faced panels
- kicking rail

- hardwood edging
- counter top
- drawer with runners housed in sides
- frame with projecting hardwood band
- blockboard shelf
- veneer faced blockboard front panels
- kicking rail with durable facing in a contrasting colour (eg black laminate)

ELEVATION 920

SECTION
Typical Purpose Made Wall Panelling Details ~

ELEVATION

- 75 x 75 cornice moulding
- 20 mm thick flat frieze
- 90 x 75 moulded capping
- 50 x 65 bolection moulding
- 12 mm thick flat panel
- 40 mm thick panel framing
- 35 x 75 moulded dado rail
- 40 mm thick raised and fielded dado panels

SECTION

- 25 x 25 floor fillet
- 40 mm thick moulded skirting
- 20 mm thick softwood ground
- 40 mm thick soldiers

NB. all panelling to be in selected hardwoods

Joinery Production
Joinery Timbers ~ both hardwoods and softwoods can be used for joinery works. Softwoods can be selected for their stability, durability and/or workability if the finish is to be paint but if it is left in its natural colour with a sealing coat the grain texture and appearance should be taken into consideration. Hardwoods are usually left in their natural colour and treated with a protective clear sealer or polish therefore texture, colour and grain pattern are important when selecting hardwoods for high class joinery work.

Typical Softwoods Suitable for Joinery Work ~

1. Douglas Fir — sometimes referred to as Columbian Pine or Oregon Pine. It is available in long lengths and has a straight grain. Colour is reddish brown to pink. Suitable for general and high class joinery. Approximate density 530kg/m3.

2. Redwood — also known as Scots Pine, Red Pine, Red Deal and Yellow Deal. It is a widely used softwood for general joinery work having good durability a straight grain and is reddish brown to straw in colour. Approximate density 430kg/m3.

3. European Spruce — similar to redwood but with a lower durability. It is pale yellow to pinkish white in colour and is used mainly for basic framing work and simple internal joinery. Approximate density 650 kg/m3.

4. Pitch Pine — durable softwood suitable for general joinery work. It is light red to reddish yellow in colour and tends to have large knots which in some cases can be used as a decorative effect. Approximate density 650kg/m3.

5. Parana Pine — moderately durable straight grained timber available in a good range of sizes. Suitable for general joinery work especially timber stairs. Light to dark brown in colour with the occasional pink stripe. Approximate density 560kg/m3.

6. Western Hemlock — durable softwood suitable for interior joinery work such as panelling. Light yellow to reddish brown in colour. Approximate density 500kg/m3.

7. Western Red Cedar — originates from British Columbia and Western USA. A straight grained timber suitable for flush doors and panel work. Approximate density 380kg/m3.
Typical Hardwoods Suitable for Joinery Works ~

1. Beech — hard close grained timber with some silver grain in the predominately reddish yellow to light brown colour. Suitable for all internal joinery. Approximately density 700kg/m3.

2. Iroko — hard durable hardwood with a figured grain and is usually golden brown in colour. Suitable for all forms of good class joinery. Approximate density 660kg/m3.

3. Mahogany (African) — interlocking grained hardwood with good durability. It has an attractive light brown to deep red colour and is suitable for panelling and all high class joinery work. Approximate density 560kg/m3.

4. Mahogany (Honduras) — durable hardwood usually straight grained but can have a mottled or swirl pattern. It is light red to pale reddish brown in colour and is suitable for all good class joinery work. Approximate density 530kg/m3.

5. Mahogany (South American) — a well figured, stable and durable hardwood with a deep red or brown colour which is suitable for all high class joinery particularly where a high polish is required. Approximate density 550kg/m3.

6. Oak (English) — very durable hardwood with a wide variety of grain patterns. It is usually a light yellow brown to a warm brown in colour and is suitable for all forms of joinery but should not be used in conjunction with ferrous metals due to the risk of staining caused by an interaction of the two materials. (The gallic acid in oak causes corrosion in ferrous metals.) Approximate density 720kg/m3.

7. Sapele — close texture timber of good durability, dark reddish brown in colour with a varied grain pattern. It is suitable for most internal joinery work especially where a polished finish is required. Approximate density 640kg/m3.

8. Teak — very strong and durable timber but hard to work. It is light golden brown to dark golden yellow in colour which darkens with age and is suitable for high class joinery work and laboratory fittings. Approximate density 650kg/m3.

9. Jarrah (Western Australia) — hard, dense, straight grained timber. Dull red colour, suited to floor and stair construction subjected to heavy wear. Approximate density 820kg/m3.

Joinery Production
Composite Boards ~ are factory manufactured, performed sheets with a wide range of properties and applications. The most common size is 2440×1220 mm or 2400×1200 mm in thicknesses from 3 to 50 mm.

1. Plywood (BS EN636) — produced in a range of laminated thicknesses from 3 to 25 mm, with the grain of each layer normally at right angles to that adjacent. 3, 7, 9 or 11 plies make up the overall thickness and inner layers may have lower strength and different dimensions to those in the outer layers. Adhesives vary considerably from natural vegetable and animal glues to synthetics such as urea, melamine, phenol and resorcinol formaldehydes. Quality of laminates and type of adhesive determine application. Surface finishes include plastics, decorative hardwood veneers, metals, rubber and mineral aggregates.

2. Block and Stripboards (BS EN 12871) — range from 12 to 43 mm thickness, made up from a solid core of glued softwood strips with a surface enhancing veneer. Appropriate for dense panelling and doors.

 Battenboard — strips over 30 mm wide (unsuitable for joinery).
 Blockboard — strips up to 25 mm wide.
 Laminboard — strips up to 7 mm wide.

3. Compressed Strawboard (BS 4046) — produced by compacting straw under heat and pressure, and edge binding with paper. Used as panels with direct decoration or as partitioning with framed support. Also, for insulated roof decking with 58 mm slabs spanning 600 mm joist spacing.
4. Particle Board

Chipboard (BS EN 319) — bonded waste wood or chip particles in thicknesses from 6 to 50mm, popularly used for floors in 18 and 22mm at 450 and 600mm maximum joist spacing, respectively. Sheets are produced by heat pressing the particles in thermosetting resins.

Wood Cement Board — approximately 25% wood particles mixed with water and cement to produce a heavy and dense board often preferred to plasterboard and fibre cement for fire cladding. Often 3 layer boards, from 6 to 40mm in thickness.

Oriented Strand Board (BS EN 300) — composed of wafer thin strands of wood, approximately 80mm long × 25mm wide, resin bonded and directionally oriented before superimposed by further layers. Each layer is at right angles to adjacent layers, similar to the structure of plywood. A popular alternative for wall panels, floors and other chipboard and plywood applications, they are produced in a range of thicknesses from 6 to 25mm.

5. Fibreboards (BS EN 622-4) — basically wood in composition, reduced to a pulp and pressed to achieve 3 categories:

Hardboard — density at least 800kg/m³ in thicknesses from 3.2 to 8mm. Provides an excellent base for coatings and laminated finishes.

Mediumboard (low density) 350 to 560kg/m³ for pinboards and wall linings in thicknesses of 6.4, 9, and 12.7mm.

Mediumboard (high density) 560 to 800kg/m³ for linings and partitions in thicknesses of 9 and 12mm.

Softboard, otherwise known as insulating board with density usually below 250kg/m³. Thicknesses from 9 to 25mm, often found impregnated with bitumen in existing flat roofing applications. Ideal as pinboard.

Medium Density Fibreboard, differs from other fibreboards with the addition of resin bonding agent. These boards have a very smooth surface, ideal for painting and are available moulded for a variety of joinery applications. Density exceeds 600kg/m³ and common board thicknesses are 9, 12, 18 and 25mm for internal and external applications.

6. Woodwool (BS EN 13168) — units of 600 mm width are available in 50, 75 and 100 mm thicknesses. They comprise long wood shavings coated with a cement slurry, compressed to leave a high proportion of voids. These voids provide good thermal insulation and sound absorption. The perforated surface is an ideal key for direct plastering and they are frequently specified as permanent formwork.
Plastics ~ the term plastic can be applied to any group of substances based on synthetic or modified natural polymers which during manufacture are moulded by heat and/or pressure into the required form. Plastics can be classified by their overall grouping such as polyvinyl chloride (PVC) or they can be classified as thermoplastic or thermosetting. The former soften on heating whereas the latter are formed into permanent non-softening materials. The range of plastics available give the designer and builder a group of materials which are strong, reasonably durable, easy to fit and maintain and since most are mass produced of relative low cost.

Typical Applications of Plastics in Buildings ~

<table>
<thead>
<tr>
<th>Application</th>
<th>Plastics Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainwater goods</td>
<td>unplasticised PVC (uPVC or PVC-U).</td>
</tr>
<tr>
<td>Soil, waste, water and gas pipes and fittings</td>
<td>uPVC; polyethylene (PE); acrylonitrile butadiene styrene (ABS); polypropylene (PP).</td>
</tr>
<tr>
<td>Hot and cold water pipes</td>
<td>chlorinated PVC; ABS; polypropylene; polyethylene; PVC (not for hot water).</td>
</tr>
<tr>
<td>Bathroom and kitchen fittings</td>
<td>glass fibre reinforced polyester (GRP); acrylic resins.</td>
</tr>
<tr>
<td>Cold water cisterns</td>
<td>polypropylene; polystyrene; polyethylene.</td>
</tr>
<tr>
<td>Rooflights and sheets</td>
<td>GRP; acrylic resins; uPVC.</td>
</tr>
<tr>
<td>DPC’s and membranes. Vapour control layers</td>
<td>low density polyethylene (LDPE); PVC film; polypropylene.</td>
</tr>
<tr>
<td>Doors and windows</td>
<td>GRP; uPVC.</td>
</tr>
<tr>
<td>Electrical conduit and fittings</td>
<td>plasticised PVC; uPVC; phenolic resins.</td>
</tr>
<tr>
<td>Thermal insulation</td>
<td>generally cellular plastics such as expanded polystyrene bead and boards; expanded PVC; foamed polyurethane; foamed phenol formaldehyde; foamed urea formaldehyde.</td>
</tr>
<tr>
<td>Floor finishes</td>
<td>plasticised PVC tiles and sheets; resin based floor paints; uPVC.</td>
</tr>
<tr>
<td>Wall claddings and internal linings</td>
<td>unplasticised PVC; polyvinyl fluoride film laminate; melamine resins; expanded polystyrene tiles & sheets.</td>
</tr>
</tbody>
</table>
7 DOMESTIC SERVICES

DRAINAGE EFFLUENTS
SUBSOIL DRAINAGE
SURFACE WATER REMOVAL
ROAD DRAINAGE
RAINWATER INSTALLATIONS
DRAINAGE SYSTEMS
DRAINAGE PIPE SIZES AND GRADIENTS
WATER SUPPLY
COLD WATER INSTALLATIONS
HOT WATER INSTALLATIONS
CISTERNs AND CYlINDERS
SANITARY FITTINGS
SINGLE AND VENTILATED STACK SYSTEMS
DOMESTIC HOT WATER HEATING SYSTEMS
ELECTRICAL SUPPLY AND INSTALLATION
GAS SUPPLY AND GAS FIRES
SERVICES FIRE STOPs AND SEALS
OPEN FIREPLACES AND FLUES
COMMUNICATIONS INSTALLATIONS
Effluent ~ can be defined as that which flows out. In building drainage terms there are three main forms of effluent:

1. Subsoil Water ~ water collected by means of special drains from the earth primarily to lower the water table level in the subsoil. It is considered to be clean and therefore requires no treatment and can be discharged direct into an approved water course.

2. Surface water ~ effluent collected from surfaces such as roofs and paved areas and like subsoil water is considered to be clean and can be discharged direct into an approved water course or soakaway.

3. Foul or Soil Water ~ effluent contaminated by domestic or trade waste and will require treatment to render it clean before it can be discharged into an approved water course.
Subsoil Drainage - Building Regulation C2 requires that subsoil drainage shall be provided if it is needed to avoid: -

a) the passage of ground moisture into the interior of the building or
b) damage to the fabric of the building.

Subsoil drainage can also be used to improve the stability of the ground, lower the humidity of the site and enhance its horticultural properties. Subsoil drains consist of porous or perforated pipes laid dry jointed in a rubble filled trench. Porous pipes allow the subsoil water to pass through the body of the pipe whereas perforated pipes which have a series of holes in the lower half allow the subsoil water to rise into the pipe. This form of ground water control is only economic up to a depth of 1.500, if the water table needs to be lowered to a greater depth other methods of ground water control should be considered (see pages 280 to 284).

The water collected by a subsoil drainage system has to be conveyed to a suitable outfall such as a river, lake or surface water drain or sewer. In all cases permission to discharge the subsoil water will be required from the authority or owner and in the case of streams, rivers and lakes, bank protection at the outfall may be required to prevent erosion (see page 650).
Subsoil Drainage Systems - the lay out of subsoil drains will depend on whether it is necessary to drain the whole site or if it is only the substructure of the building which needs to be protected. The latter is carried out by installing a cut off drain around the substructure to intercept the flow of water and divert it away from the site of the building. Junctions in a subsoil drainage system can be made using standard fittings or by placing the end of the branch drain onto the crown of the main drain.

Typical Examples -

- **HERRINGBONE**
 - branch drains - spacing 6.000 to 10.000
 - maximum length 30.000

- **GRID IRON**
 - branch drains

- **SITE BOUNDARY**
 - MOAT or CUT OFF
 - to outfall

TYPICAL OUTFALL DETAILS -

- dry jointed subsoil drain
- retaining wall in engineering bricks to BS 3921
- last 3.000 to 5.000 laid as surface water drain to prevent marshlike conditions at outfall

NB. connections to surface water sewer can be made at inspection chamber or direct to the sewer using a saddle connector - it may be necessary to have a catchpit to trap any silt (see page 654)
General Principles — a roof must be designed with a suitable fall towards the surface water collection channel or gutter which in turn is connected to vertical rainwater pipes which convey the collected discharge to the drainage system. The fall of the roof will be determined by the chosen roof covering or the chosen pitch will limit the range of coverings which can be selected.

- pitched roof
- ridge
- verge
- eaves gutter—recommended minimum fall 1 : 360
- roofing felt should extend into and below top of gutter to prevent water from being blown into eaves
- rainwater pipe—can be fitted internally or externally, if internal it must have leak proof joints
- rainwater pipes and gullies must be arranged so as not to cause dampness or damage to any part of the building

Minimum Roof Pitches —
Slates — depends on width from 25°
Hand made plain tiles — 45°
Machine made plain tiles — 35°
Single lap and interlocking tiles—depends on type from 12½°
Thatch — 45°
Timber shingles — 14°

- final discharge can be:
 1. Direct connection to a drain discharging into a soakaway
 2. Direct connection to a drain discharging into a surface water sewer
 3. Indirect connection to a drain by means of a trapped gully if drain discharges into a combined sewer

See page 657 for details
Surface Water Removal—Roofs

Rainwater pipe final discharge as given on previous page

Minimum Recommended Falls for Various Finishes ~
Aluminium - 1 : 60 Lead - 1 : 120 Copper - 1 : 60
Built-up roofing felts - 1 : 60 Mastic asphalt - 1 : 80

pitched roof

minimum clear width 300mm to allow for cleaning

converging pitched roofs forming a valley

minimum clear width 300mm to allow for cleaning

PARAPET GUTTER

gutter formed to discharge into internal rainwater pipes or to external rainwater pipes via outlets through the parapet

VALLEY GUTTER

gutter formed to discharge into internal rainwater pipes or to external rainwater pipes sited at the gable ends
Surface Water Removal—Paved Areas

YARD GULLY COLLECTION

- Paving drains away from building
- Paved area laid to falls of 1:60
- Yard gully - to be trapped with a 50mm minimum water seal if connected to a combined sewer
- Maximum paved area per gully = 400 m²
- Number and size of gullies governed by area being drained and/or shape of paved area

CHANNEL COLLECTION

- Paving drains away from building
- Paved area laid to falls of 1:60
- Channel laid to falls of 1:120 and connected to drainage system with a trapped gully if it is a combined sewer outlet
- Maximum paved area per gully = 400 m²
- Number and size of channels governed by area being drained and/or shape of paved area

- Could have grating cover
- Continuous slot
- Cast iron square mesh grating
- Half round glazed clayware open channel
- Precast concrete channel blocks
- Precast or insitu concrete box channel
Highway Drainage ~ the stability of a highway or road relies on two factors ~

1. Strength and durability of upper surface
2. Strength and durability of subgrade which is the subsoil on which the highway construction is laid.

The above can be adversely affected by water therefore it may be necessary to install two drainage systems. One system (subsoil drainage) to reduce the flow of subsoil water through the subgrade under the highway construction and a system of surface water drainage.

Typical Highway Subsoil Drainage Methods ~

Subsoil Drain - acts as a cut off drain and can be formed using perforated or porous drain pipes. If filled with rubble only it is usually called a French or rubble drain.

Open Ditch - acts as a cut off drain and could also be used to collect surface water discharged from a rural road where there is no raised kerb or surface water drains.

Surface Water Drainage Systems ~
Road Drainage - this consists of laying the paved area or road to a suitable crossfall or gradient to direct the run-off of surface water towards the drainage channel or gutter. This is usually bounded by a kerb which helps to convey the water to the road gullies which are connected to a surface water sewer. For drains or sewers under 900 mm internal diameter inspection chambers will be required as set out in the Building Regulations. The actual spacing of road gullies is usually determined by the local highway authority based upon the carriageway gradient and the area to be drained into one road gully. Alternatively the following formula could be used:

\[D = \frac{280 \sqrt{S}}{W} \]

where \(D \) = gully spacing
\(S \) = carriageway gradient (per cent)
\(W \) = width of carriageway in metres

If \(S = 1:60 = 1.66 \% \) and \(W = 4.500 \)

\[D = \frac{280 \sqrt{1.66}}{4.500} = \text{say 80.000} \]

Typical Road Gully Detail -

- footpath (see Roads–Footpaths on page 118)
- drainage channel (fall 1:200)
- 300 x 150 precast concrete kerb
- levelling brick course
- kerb foundation strip
- branch drain to surface water sewer
- 100 or 150 mm dia. outlet
- 150 mm thick mass concrete surround
- precast concrete or clayware road gully
- cast iron road gully grating and frame
- carriageway paving
Materials – the traditional material for domestic eaves gutters and rainwater pipes is cast iron but uPVC systems are very often specified today because of their simple installation and low maintenance costs. Other materials which could be considered are aluminium alloy, galvanized steel and stainless steel but whatever material is chosen it must be of adequate size, strength and durability.

Typical Eaves Details –

- half round gutter – other profiles are ogee and box
- gutter support bracket
- outlet spigot
- pitched roof covered with plain tiles
- half round gutter
- fascia fixing gutter brackets
- 112° offset or swanneck
- rainwater pipe
- external wall
- rafter fixing gutter brackets
- 112° offset or swanneck
- rainwater pipe

CLOSED EAVES

OPEN EAVES

For details of rainwater pipe connection to drainage see next page
Rainwater Installation Details

Pipe clip, holderbat or spigot with projecting ears

Rainwater pipe

Sealed access cover

Ground level

Drain coupling

Drain to surface water sewer or soakaway

Mass concrete bed

Rainwater shoe

External wall

Ground floor

Note: to satisfy current standards, cavity insulation to be taken down to at least 150 mm below top of insulation in floor.

For details of rainwater pipe connection to gutter see previous page.
Soakaways ~ provide a means for collecting and controlling the seepage of rainwater into surrounding granular subsoils. They are not suitable in clay subsoils. Siting is on land at least level and preferably lower than adjacent buildings and no closer than 5 m to a building. Concentration of a large volume of water any closer could undermine the foundations. The simplest soakaway is a rubble filled pit, which is normally adequate to serve a dwelling or other small building. Where several buildings share a soakaway, the pit should be lined with precast perforated concrete rings and surrounded in free-draining material.

BRE Digest 365 provides capacity calculations based on percolation tests. The following empirical formula will prove adequate for most situations:

\[C = \frac{AR}{3} \]

where:
- \(C \) = capacity (m\(^3\))
- \(A \) = area on plan to be drained (m\(^2\))
- \(R \) = rainfall (m/h)

e.g. roof plan area 60 m\(^2\) and rainfall of 50 mm/h (0.05 m/h)

\[C = \frac{60 \times 0.05}{3} = 1.0 \text{ m}^3 \text{ (below invert of discharge pipe) } \]

Ref. BRE Digest 365: Soakaways.
Drains ~ these can be defined as a means of conveying surface water or foul water below ground level.

Sewers ~ these have the same functions as drains but collect the discharge from a number of drains and convey it to the final outfall. They can be a private or public sewer depending on who is responsible for the maintenance.

Basic Principles ~ to provide a drainage system which is simple efficient and economic by laying the drains to a gradient which will render them self cleansing and will convey the effluent to a sewer without danger to health or giving nuisance. To provide a drainage system which will comply with the minimum requirements given in Part H of the Building Regulations

Typical Basic Requirements ~

All junctions should be oblique and in direction of flow

There must be an access point at a junction unless each run can be cleared from another access point.
Separate System – the most common drainage system in use where the surface water discharge is conveyed in separate drains and sewers to that of foul water discharges and therefore receives no treatment before the final outfall.

Typical Example ~

if subsoil is suitable the rainwater pipes may be allowed to be connected direct to soakaways
Combined System – this is the simplest and least expensive system to design and install but since all forms of discharge are conveyed in the same sewer the whole effluent must be treated unless a sea outfall is used to discharge the untreated effluent.

Typical Example ~

if subsoil is suitable the rainwater pipes may be allowed to be connected direct to soakaways

Ref. BS EN 752-1 to -7: Drain and sewer systems outside buildings.
Partially Separate System – a compromise system – there are two drains, one to convey only surface water and a combined drain to convey the total foul discharge and a proportion of the surface water.

Typical Example ~

if subsoil is suitable the rainwater pipes may be allowed to be connected direct to soakaways
Inspection Chambers ~ these provide a means of access to drainage systems where the depth to invert level does not exceed 1:000.

Manholes ~ these are also a means of access to the drains and sewers, and are so called if the depth to invert level exceeds 1:000.

These means of access should be positioned in accordance with the requirements of part H of the Building Regulations. In domestic work inspection chambers can be of brick, precast concrete or preformed in plastic for use with patent drainage systems. The size of an inspection chamber depends on the depth to invert level, drain diameter and number of branch drains to be accommodated within the chamber. Ref. BS EN 752: Drain and sewer systems outside buildings.
Plastic Inspection Chambers ~ the raising piece can be sawn horizontally with a carpenter's saw to suit depth requirements with the cover and frame fitted at surface level. Bedding may be a 100 mm prepared shingle base or 150 mm wet concrete to ensure a uniform support.

The unit may need weighting to retain it in place in areas of high water table, until backfilled with granular material. Under roads a peripheral concrete collar is applied to the top of the chamber in addition to the 150 mm thickness of concrete surrounding the inspection chamber.

Typical Example ~

- **cast iron cover and frame**
- **drain pipes**
- **base unit with 5 x 100 mm inlets and 1 x 100 mm outlet**
- **unused inlets left blanked off**

raising piece
- one raising piece gives a chamber with a depth of 650 mm, two raising pieces gives a chamber with a depth of 1000 mm
Means Of Access — provision is required for maintenance and inspection of drainage systems. This should occur at:

* the head (highest part) or close to it
* a change in horizontal direction
* a change in vertical direction (gradient)
* a change in pipe diameter
* a junction, unless the junction can be rodded through from an access point
* long straight runs (see table)

Maximum spacing of drain access points (m)

<table>
<thead>
<tr>
<th>To:</th>
<th>Small access fitting</th>
<th>Large access fitting</th>
<th>Junction chamber</th>
<th>Inspection chamber</th>
<th>Manhole</th>
</tr>
</thead>
<tbody>
<tr>
<td>From: Drain head</td>
<td>12</td>
<td>12</td>
<td>22</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Rodding eye</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Small access fitting</td>
<td></td>
<td></td>
<td>12</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Large access fitting</td>
<td></td>
<td></td>
<td>22</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Inspection chamber</td>
<td>22</td>
<td>45</td>
<td>22</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Manhole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

* Small access fitting is 150mm dia. or 150mm × 100mm. Large access fitting is 225mm × 100mm.

Rodding Eyes and Shallow Access Chambers — these may be used at the higher parts of drainage systems where the volume of excavation and cost of an inspection chamber or manhole would be unnecessary. SACs have the advantage of providing access in both directions. Covers to all drain openings should be secured to deter unauthorised access.

Excavations ~ drains are laid in trenches which are set out, excavated and supported in a similar manner to foundation trenches except for the base of the trench which is cut to the required gradient or fall.

Joints ~ these must be watertight under all working and movement conditions and this can be achieved by using rigid and flexible joints in conjunction with the appropriate bedding.
Watertightness ~ must be ensured to prevent water seepage and erosion of the subsoil. Also, in the interests of public health, foul water should not escape untreated. The Building Regulations, Approved Document H1: Section 2 specifies either an air or water test to determine soundness of installation.

AIR TEST ~ equipment: manometer and accessories (see page 685)
2 drain stoppers, one with tube attachment

Application ~

![Diagram of air test setup]

Test ~ 100 mm water gauge to fall no more than 25 mm in 5 mins. Or, 50 mm w.g. to fall no more than 12 mm in 5 mins.

WATER TEST ~ equipment: Drain stopper
Test bend
Extension pipe

Application ~

![Diagram of water test setup]

Test ~ 1.5 m head of water to stand for 2 hours and then topped up. Leakage over the next 30 minutes should be minimal, i.e.
100 mm pipe ~ 0.05 litres per metre, which equates to a drop of 6.4 mm/m in the extension pipe, and
150 mm pipe ~ 0.08 litres per metre, which equates to a drop of 4.5 mm/m in the extension pipe.
Drainage Pipes — sizes for normal domestic foul water applications:

- <20 dwellings = 100 mm diameter
- 20–150 dwellings = 150 mm diameter

Exceptions: 75 mm diameter for waste or rainwater only (no WCs)
- 150 mm diameter minimum for a public sewer

Other situations can be assessed by summating the Discharge Units from appliances and converting these to an appropriate diameter stack and drain, see BS EN 12056-2 (stack) and BS EN 752-4 (drain). Gradient will also affect pipe capacity and when combined with discharge calculations, provides the basis for complex hydraulic theories.

The simplest correlation of pipe size and fall, is represented in Maguire’s rule:

- 4” (100 mm) pipe, minimum gradient 1 in 40
- 6” (150 mm) pipe, minimum gradient 1 in 60
- 9” (225 mm) pipe, minimum gradient 1 in 90

The Building Regulations, approved Document H1 provides more scope and relates to foul water drains running at 0·75 proportional depth. See Diagram 9 and Table 6 in section 2 of the Approved Document.

Other situations outside of design tables and empirical practice can be calculated.

eg. A 150 mm diameter pipe flowing 0·5 proportional depth.

Applying the Chezy formula for gradient calculations:

\[v = c \sqrt{m \times i} \]

where: \(v \) = velocity of flow, (min for self cleansing = 0·8 m/s)
- \(c \) = Chezy coefficient (58)
- \(m \) = hydraulic mean depth or:
 \[\text{area of water flowing} \div \text{wetted perimeter} \]
 for 0·5 p.d. = diam/4
- \(i \) = inclination or gradient as a fraction 1/x

Selecting a velocity of 1 m/s as a margin of safety over the minimum:

\[i = \frac{58 \sqrt{0\cdot15/4}}{0\cdot0079} \times i \]
\[i = 0\cdot0079 \text{ where } i = 1/x \]

So, \(x = 1/0\cdot0079 = 126 \), i.e. a minimum gradient of 1 in 126
Water supply — an adequate supply of cold water of drinking quality should be provided to every residential building and a drinking water tap installed within the building. The installation should be designed to prevent waste, undue consumption, misuse, contamination of general supply, be protected against corrosion and frost damage and be accessible for maintenance activities. The intake of a cold water supply to a building is owned jointly by the water authority and the consumer who therefore have joint maintenance responsibilities.

Typical Water Supply Arrangement~

- Site boundary
- Property of water authority
- Property of consumer ~ see next page
- Expansion loop or goose neck to relieve stress on connection due to pipe settlement
- Cast iron surface box (BS 5834-2)
- 750 mm minimum ground for frost protection
- Screw down cock
- Communication pipe at right angles to water authority main
- Water main - fully charged with water under pressure
- 150 mm internal diameter stop valve guard in clayware (BS 5834-1)
- Mass concrete base to suit subsoil type
- Stop valve
Water Supply—Basic Requirements

Service Pipe Materials:
- unprotected iron - not suitable
- unprotected steel - not suitable
- galvanised steel - may be acceptable to water authority
- lead - prohibited
- copper - BS EN 1057 acceptable
- plastic - blue polyethylene BS 6572, BS EN 12201-2 and uPVC, BS 3505, BS EN 1452-2 are acceptable
General ~ when planning or designing any water installation the basic physical laws must be considered :-

1. Water is subject to the force of gravity and will find its own level.
2. To overcome friction within the conveying pipes water which is stored prior to distribution will require to be under pressure and this is normally achieved by storing the water at a level above the level of the outlets. The vertical distance between these levels is usually called the head.
3. Water becomes less dense as its temperature is raised therefore warm water will always displace colder water whether in a closed or open circuit.

Direct Cold Water Systems ~ the cold water is supplied to the outlets at mains pressure the only storage requirements is a small capacity cistern to feed the hot water storage tank. These systems are suitable for districts which have high level reservoirs with a good supply and pressure. The main advantage is that drinking water is available from all cold water outlets, disadvantages include lack of reserve in case of supply cut off, risk of back syphonage due to negative mains pressure and a risk of reduced pressure during peak demand periods.

Typical Direct Cold Water System ~

115 litre feed cistern to hot water cylinder

isolating valve

15 mm dia. rising main or service pipe

15 mm dia. 15 mm dia. 22 mm dia.

15 mm dia.

stop valve

to water main

22 mm dia. overflow and warning pipe

22 mm dia.
cold feed pipe

hot water storage cylinder

BASIN WC

15 mm dia.

BASIN

SINK

drain off tap or valve

NB all pipe sizes given are outside diameters for copper tube
Indirect Systems ~ Cold water is supplied to all outlets from a cold water storage cistern except for the cold water supply to the sink(s) where the drinking water tap is connected directly to incoming supply from the main. This system requires more pipework than the direct system but it reduces the risk of back syphonage and provides a reserve of water should the mains supply fail or be cut off. The local water authority will stipulate the system to be used in their area.

Typical Indirect Cold Water System ~

cold water storage cistern minimum capacity 230 litres if used as a feed cistern and storage or 115 litres for storage only

22 mm dia. cold water distribution pipe

WC cistern

15 mm dia.

15 mm dia.

15 mm dia. service pipe or rising main
drinking water outlet

SINK

stop valve

to water main

NB all pipe sizes given are outside diameters for copper tube
Direct System — this is the simplest and least expensive system of hot water installation. The water is heated in the boiler and the hot water rises by convection to the hot water storage tank or cylinder to be replaced by the cooler water from the bottom of the storage vessel. Hot water drawn from storage is replaced with cold water from the cold water storage cistern. Direct systems are suitable for soft water areas and for installations which are not supplying a central heating circuit.

Typical Direct Hot Water System —

- Cold water storage cistern minimum capacity 230 litres
- Overflow
- Isolating valve
- 15 mm dia. service pipe or rising main
- 22 mm dia. open vent or expansion pipe to release air and relieve pressure
- 15 mm dia.
- 22 mm dia. hot water supply pipe
- 28 mm dia. primary flow pipe
- Possible pumped secondary return pipe
- In hard water areas primary circuit pipes could be 35 mm diameter
- 15 mm dia. hot water supply pipe
- Drain valve
- Safety valve
- BASIN
- Bath
- Sink
- Boiler

NB all pipe sizes given are outside diameters for copper tube
Indirect System ~ this is a more complex system than the direct system but it does overcome the problem of furring which can occur in direct hot water systems. This method is therefore suitable for hard water areas and in all systems where a central heating circuit is to be part of the hot water installation. Basically the pipe layouts of the two systems are similar but in the indirect system a separate small capacity feed cistern is required to charge and top up the primary circuit. In this system the hot water storage tank or cylinder is in fact a heat exchanger — see page 678.

Typical Indirect Hot Water System~

NB all pipe sizes given are outside diameters for copper tube
Mains Fed Indirect System ~ now widely used as an alternative to conventional systems. It eliminates the need for cold water storage and saves considerably on installation time. This system is established in Europe and the USA, but only acceptable in the UK at the local water authority's discretion. It complements electric heating systems, where a boiler is not required. An expansion vessel replaces the standard vent and expansion pipe and may be integrated with the hot water storage cylinder. It contains a neoprene diaphragm to separate water from air, the air providing a 'cushion' for the expansion of hot water. Air loss can be replenished by foot pump as required.

NB. p.r.v. = pressure relief (safety) valve
Flow Controls – these are valves inserted into a water installation to control the water flow along the pipes or to isolate a branch circuit or to control the draw-off of water from the system.

Typical Examples ~

GATE VALVE
- wheel head
- spindle
- packing gland
- wedge shaped gate
- used to control flow of water

STOP VALVE
- crutch head
- spindle
- packing gland
- loose jumper
- used to stop flow of water

PORTSMOUTH FLOAT VALVE
- seating
- piston
- cap
- outlet
- float arm

DIAPHRAGM FLOAT VALVE
- nylon seating
- top outlet
- lock nut
- float arm

BIB TAP
- capstan head
- spindle
- packing gland
- easy clean cover
- jumper
- bib outlet

PILLAR TAP
- vertical inlet – used in conjunction with fittings
- back nut
- outlet
Cisterns ~ these are fixed containers used for storing water at atmospheric pressure. The inflow of water is controlled by a floatvalve which is adjusted to shut off the water supply when it has reached the designed level within the cistern. The capacity of the cistern depends on the draw off demand and whether the cistern feeds both hot and cold water systems. Domestic cold water cisterns should be placed at least 750 mm away from an external wall or roof surface and in such a position that it can be inspected, cleaned and maintained. A minimum clear space of 300 mm is required over the cistern for floatvalve maintenance. An overflow or warning pipe of not less than 22 mm diameter must be fitted to fall away to discharge in a conspicuous position. All draw off pipes must be fitted with a gate valve positioned as near to the cistern as possible.

Cisterns are available in a variety of sizes and materials such as galvanised mild steel (BS 417), moulded plastic (BS 4213) and reinforced plastic (BS 4994). If the cistern and its associated pipework are to be housed in a cold area such as a roof they should be insulated against freezing.

Typical Details ~

- overflow and warning pipe - minimum fall 1:10
- vent or expansion pipe
- cistern insulation
- pipe insulation
- gate valve
- draw off pipe
- floating ball floatvalve
- stop valve
- rising main
- cistern body
- ceiling joist
- insulation required under cistern when room below is unheated
- timber platform on bearers
- roof insulation
Indirect Hot Water Cylinders - these cylinders are a form of heat exchanger where the primary circuit of hot water from the boiler flows through a coil or annulus within the storage vessel and transfers the heat to the water stored within. An alternative hot water cylinder for small installations is the single feed or 'Primatic' cylinder which is self venting and relies on two air locks to separate the primary water from the secondary water. This form of cylinder is connected to pipework in the same manner as for a direct system (see page 673) and therefore gives savings in both pipework and fittings. Indirect cylinders usually conform to the recommendations of BS 417-2 (galvanized mild steel) or BS1566 (copper).

Typical Examples ~

1. Cylinder is filled in the normal way and the primary system is filled via the heat exchanger, as the initial filling continues air locks are formed in the upper and lower chambers of the heat exchanger and in the vent pipe.
2. The two air locks in the heat exchanger are permanently maintained and are self-recuperating in operation. These air locks isolate the primary water from the secondary water almost as effectively as a mechanical barrier.
3. The expansion volume of total primary water at a flow temperature of 82°C is approximately 1/25 and is accommodated in the upper expansion chamber by displacing air into the lower chamber, upon contraction reverse occurs.

Prismatic Cylinders ~

1. Cylinder is filled in the normal way and the primary system is filled via the heat exchanger, as the initial filling continues air locks are formed in the upper and lower chambers of the heat exchanger and in the vent pipe.
2. The two air locks in the heat exchanger are permanently maintained and are self-recuperating in operation. These air locks isolate the primary water from the secondary water almost as effectively as a mechanical barrier.
3. The expansion volume of total primary water at a flow temperature of 82°C is approximately 1/25 and is accommodated in the upper expansion chamber by displacing air into the lower chamber, upon contraction reverse occurs.
Water Installations—Pipework Joints

Typical Examples:

- **MANIPULATIVE COMPRESSION JOINT**
 - Copper tube
 - Coupling fitting
 - Bead formed with swaging tool
 - Copper tube
 - Friction locking ring
 - Tapered compression ring

- **NON-MANIPULATIVE COMPRESSION JOINT**
 - Copper tube
 - Coupling fitting
 - Solder retaining groove

- **SOLDERED CAPILLARY JOINT**
 - Copper tube
 - Screwed socket fitting
 - PTFE (polytetrafluoroethylene) tape or hemp and paste in thread

- **SCREWED JOINT**
 - Steel pipe

- **SOLVENT WELD JOINT**
 - Copper coupling fitting
 - Copper liner or sleeve
 - Tapered compression ring

- **COMPRESSION JOINT**
 - Polythene pipe
Fireclay Sinks (BS 1206) — these are white glazed sinks and are available in a wide range of sizes from $460 \times 380 \times 200$ deep up to $1220 \times 610 \times 305$ deep and can be obtained with an integral drainer. They should be fixed at a height between 850 and 920 mm and supported by legs, cantilever brackets or dwarf brick walls.

Metal Sinks (BS EN 13310) — these can be made of enamelled pressed steel or stainless steel with single or double drainers in sizes ranging from 1070×460 to 1600×530 supported on a cantilever brackets or sink cupboards.

Ceramic Wash Basins (BS 1188)

- fixing height: 790 mm
- bowl depth: 165 mm
- plan size: 457×653 mm
- 32 mm waste to BS EN 274
- pedestal support
- 38 or 78 mm seal trap
- NB sink could be supported on cantilever brackets
- splash back
- overflow
- plug and chain
- back nut and washer
- waste pipe
- cleaning eye
Sanitary Fittings—Baths and Showers

Typical Examples

- Abutment wall
- 20mm dia. supply pipes
- Flexible overflow pipe
- 38mm trap
- Bath body
- Bath panel with toe recess
- Adjustable feet
- Pillar taps
- Plug and chain

LONGITUDINAL SECTION

- 1675 to 1830
- 420 to 730
- 700 to 870

CROSS SECTION

- Adjustable feet
- Bath body
- Bath panel
- Wall tiling

Baths ~ these are available in wide range of materials, sizes, designs and colours usually conforming to the recommendations of:
- BS 1189 - cast iron
- BS 1390 - sheet steel
- BS 4305 - plastics
- BS EN 232 - connecting dimensions

Shower Curtain or Cubicle

- Adjustable height spray head
- Flexible tube
- Thermostatically controlled mixing valve
- 600 x 600 up to 900 x 900
- Shower tray

Shower tray ~ BS EN 251 - connecting dimensions

Showers ~ these can be freestanding with a curtain or cubicle enclosure or they can be an attachment to a bath mixer tap. Shower trays are usually made of glazed fireclay or acrylic plastic and occupy less space than a bath. To be efficient showers need a minimum head of water above the spray of 1:000.
Sanitary Fittings—Water Closets and Cisterns

Typical Examples

Wash Down Water Closet - BS EN 37 - common type which relies on flush of water to remove contents of bowl. Horizontal outlet now standard.

- flush pipe from high or low level cistern
- governed by cistern type
- BS1254 plastic wc seat
- 50mm minimum water seal
- ceramic wc pan

Siphonic Water Closets - efficient and quiet in operation but higher risk of blockage if misused - can be single or double trap format.

- close coupled low level cistern
- 380
- 50mm minimum water seal
- ceramic wc pan

- soil pipe
- float valve
- overflow
- cast iron bell
- high level bell type cistern

- piston and flap in piston chamber
- siphon bend
- flush pipe
- low level piston cistern
Single Stack System — method developed by the Building Research Establishment to eliminate the need for ventilating pipework to maintain the water seals in traps to sanitary fittings. The slope and distance of the branch connections must be kept within the design limitations given below. This system is only possible when the sanitary appliances are closely grouped around the discharge stack.

Typical Details:
- 100 mm dia. soil and vent pipe
- 32 mm dia. waste pipe with 75 mm min. seal trap
- Maximum length: 1.700
- Slope determined by length: slope 20 to 120 mm/m
- 3.000 max.
- 40 mm dia. waste pipe with 75 mm min. seal trap
- 50 mm dia. parallel branch
- 3.000 max.
- 40 mm dia. waste pipe with 75 mm min. seal trap
- Minimum vertical distance from lowest connection to drain invert: 450 mm
- Perforated dome to top of pipe above roof level
- W.C. with 50 mm min. water seal
- Branch slope: 9 mm/m with 50 mm radius at junction
- W.C. branch
- Large radius bends
- No connection should be made within the shaded portion

BATH

WATER CLOSET

SINK

Basin

Sink
Ventilated Stack Systems — where the layout of sanitary appliances is such that they do not conform to the requirements for the single stack system shown on page 683 ventilating pipes will be required to maintain the water seals in the traps. Three methods are available to overcome the problem, namely a fully ventilated system, a ventilated stack system and a modified single stack system which can be applied over any number of storeys.

VENTILATED STACK SYSTEM used where grouping of appliances makes individual venting unnecessary — seals retained by cross venting to a separate ventilating stack.

FULLY VENTILATED SYSTEM used where there are a large number of appliances which are widely dispersed or grouped in ranges.

Minimum diameter for branch ventilating pipes = 25mm.
Airtightness ~ must be ensured to satisfy public health legislation. The Building Regulations, Approved Document H1: Section 1, provides minimum standards for test procedures. An air or smoke test on the stack must produce a pressure at least equal to 38 mm water gauge for not less than 3 minutes.

Application ~

* if access plate is not provided, top connection to first IC may be plugged and rubber tube inserted through wc pan seal.

NB. Smoke tests are rarely applied now as the equipment is quite bulky and unsuited for use with uPVC pipes. Smoke producing pellets are ideal for leakage detection, but must not come into direct contact with plastic materials.
One Pipe System ~ the hot water is circulated around the system by means of a centrifugal pump. The flow pipe temperature being about 80°C and the return pipe temperature being about 60 to 70°C. The one pipe system is simple in concept and easy to install but has the main disadvantage that the hot water passing through each heat emitter flows onto the next heat emitter or radiator, therefore the average temperature of successive radiators is reduced unless the radiators are carefully balanced or the size of the radiators at the end of the circuit are increased to compensate for the temperature drop.

Typical Layout ~

Overflow

Feed and Expansion Cistern

Rising Main

Cold Feed Pipe to Cylinder

Expansion Pipe

Primary Cold Feed Pipe

Hot Water Circuit

Drain Valve

Indirect Hot Water Storage Cylinder

Primary Flow Pipe

Primary Return Pipe

Pump and Isolating Valves

Boiler

Drain Valve

Bypass Pipe

Control Valve

Balancing Valve

Bypass Pipe

Radiator

Alternate Radiator Connection Details

Cheaper and neater method but less efficient than top flow connection shown below

22 mm dia. heating circuit pipe

Upper Floor Radiators

Ground Floor Radiators
Two Pipe System ~ this is a dearer but much more efficient system than the one pipe system shown on the previous page. It is easier to balance since each radiator or heat emitter receives hot water at approximately the same temperature because the hot water leaving the radiator is returned to the boiler via the return pipe without passing through another radiator.
Micro Bore System - this system uses 6 to 12mm diameter soft copper tubing with an individual flow and return pipe to each heat emitter or radiator from a 22mm diameter manifold. The flexible and unobtrusive pipework makes this system easy to install in awkward situations but it requires a more powerful pump than that used in the traditional small bore systems. The heat emitter or radiator valves can be as used for the one or two pipe small bore systems alternatively a double entry valve can be used.

Typical Layout
- Overflow to feed and expansion cistern
- Rising main
- Cold feed pipe to cylinder
- Expansion pipe
- Primary cold feed pipe
- Hot water circuit
- Drain valve
- Indirect hot water storage cylinder
- Boiler
- Pump and isolating valves
- Manifold
- Upper floor radiators
- Micro bore flow and return pipes to each radiator
- Ground floor radiators
- Micro bore flow and return pipes

TYPICAL MANIFOLD DETAILS
- Manifold blanked off in centre to form two chambers
- Flow pipes
- Return pipes
- Outlets to both sides of manifold at 90 or 180° to one another
- Inlets similar to outlets
- Unused inlets or outlets capped off
- Double entry valve to each radiator
- Typical layout of a hot water heating system.
Controls ~ the range of controls available to regulate the heat output and timing operations for a domestic hot water heating system is considerable, ranging from thermostatic radiator control valves to programmers and controllers.

Typical Example ~

Boiler — fitted with a thermostat to control the temperature of the hot water leaving the boiler.

Heat Emitters or Radiators — fitted with thermostatically controlled radiator valves to control flow of hot water to the radiators to keep room at desired temperature.

Programmer/Controller — this is basically a time switch which can usually be set for 24 hours, once daily or twice daily time periods and will generally give separate programme control for the hot water supply and central heating systems. The hot water cylinder and room thermostatic switches control the pump and motorised valve action.

for annotated details of hot water and heating circuits see pages 686-688
Electrical Supply ~ in England and Wales electricity is generated and supplied by National Power, PowerGen and Nuclear Electric and distributed through regional supply companies, whereas in Scotland it is generated, supplied and distributed by Scottish Power and the Scottish Hydro-Electric Power Company. The electrical supply to a domestic installation is usually 230 volt single phase and is designed with the following basic aims:-

1. Proper earthing to avoid shocks to occupant.
3. Prevention of outbreak of fire.

Typical Electrical Supply Intake Details ~

For alternative arrangement of supply intake see following page
Electrical Supply Intake — although the electrical supply intake can be terminated in a meter box situated within a dwelling most supply companies prefer to use the external meter box to enable the meter to be read without the need to enter the premises.

For alternative arrangement of supply intake see previous page.
Entry and Intake of Electrical Service - the local electricity supply company is responsible for providing electricity up to and including the meter, but the consumer is responsible for safety and protection of the company's equipment. The supplier will install the service cable up to the meter position where their termination equipment is installed. This equipment may be located internally or fixed externally on a wall, the latter being preferred since it gives easy access for reading the meter — see details on the previous page.

Meter Boxes — generally the supply company's meters and termination equipment are housed in a meter box. These are available in fibreglass and plastic, ranging in size from 450mm wide x 638mm high to 585mm wide x 815mm high with an overall depth of 177mm.

Consumer Control Unit — this provides a uniform, compact and effective means of efficiently controlling and distributing electrical energy within a dwelling. The control unit contains a main double pole isolating switch controlling the live phase and neutral conductors, called bus bars. These connect to the fuses or miniature circuit breakers protecting the final subcircuits.

Typical Layout ~

- *door*
- *standard meter*
- *low tariff meter*
- *fuses or circuit breakers*
- *double pole isolating switch*
- *neutral bus bar*
- *time clock for low tariff meter*

- **final subcircuits**
 - 1 - 45amp shower circuit
 - 2 & 3 - 32amp ring circuits
 - 4 - 32amp cooker circuit
 - 5 - 16amp immersion heater
 - 6 - 6amp central heating
 - 7 & 8 - 6amp lighting circuits
Consumer's Power Supply Control Unit — this is conveniently abbreviated to consumer unit. As described on the previous page, it contains a supply isolator switch, live, neutral and earth bars, plus a range of individual circuit over-load safety protection devices. By historical reference this unit is sometimes referred to as a fuse box, but modern variants are far more sophisticated. Over-load protection is provided by miniature circuit breakers attached to the live or phase bar. Additional protection is provided by a split load residual current device (RCD) dedicated specifically to any circuits that could be used as a supply to equipment outdoors, e.g. power sockets on a ground floor ring main.

RCD — a type of electro-magnetic switch or solenoid which disconnects the electricity supply when a surge of current or earth fault occurs. See Part 10 of the Building Services Handbook for more detail.

Typical Split Load Consumer Unit —

![Diagram of a typical split load consumer unit]

Note: with an overhead supply, the MAIN SWITCH is combined with a 100 mA RCD protecting all circuits.

Note:
Circuits (1) to fixtures, i.e. lights, cooker, immersion heater and smoke alarms.
Circuits (2) to socket outlets that could supply portable equipment outdoors.
Electric Cables - these are made up of copper or aluminium wires called conductors surrounded by an insulating material such as PVC or rubber.

Typical Examples
- rubber or PVC outer sheath
- live - brown
- earth - green and yellow
- neutral - blue
- rubber or PVC insulation
- aluminium or copper conductors

SHEATHED CABLES

MINERAL INSULATED CABLE

Conduits - these are steel or plastic tubes which protect the cables. Steel conduits act as an earth conductor whereas plastic conduits will require a separate earth conductor drawn in. Conduits enable a system to be rewired without damage or interference of the fabric of the building. The cables used within conduits are usually insulated only, whereas in non-rewireable systems the cables have a protective outer sheath.

Typical Conduit Fittings
- removable access covers
- threaded inlets and outlets
- TANGENT BOX
- ANGLE BOX
- switch box
- entry bush
- coupler

Trunking - alternative to conduit and consists of a preformed cable carrier which is surface mounted and is fitted with a removable or 'snap on' cover which can have the dual function of protection and trim or surface finish.
Wiring systems ~ rewireable systems housed in horizontal conduits can be cast into the structural floor slab or sited within the depth of the floor screed. To ensure that such a system is rewireable, draw-in boxes must be incorporated at regular intervals and not more than two right angle boxes to be included between draw-in points. Vertical conduits can be surface mounted or housed in a chase cut in to a wall provided the depth of the chase is not more than one third of the wall thickness. A horizontal non-rewireable system can be housed within the depth of the timber joists to a suspended floor whereas vertical cables can be surface mounted or housed in a length of conduit as described for rewireable systems.
Cable Sizing — the size of a conductor wire can be calculated taking into account the maximum current the conductor will have to carry (which is limited by the heating effect caused by the resistance to the flow of electricity through the conductor) and the voltage drop which will occur when the current is carried. For domestic electrical installations the following minimum cable specifications are usually suitable —

- **Lighting Circuits** -
 - neutral - as for live conductor
 - live conductor - 1.38 mm diameter
 - 1 mm² cross section area

- **Immersion Heater** -
 - neutral - as for live conductor
 - live conductor - 1.78 mm diameter
 - 2.5 mm² cross section area

- **Power Ring Circuits** -
 - neutral - as for live conductor
 - live conductor - 7 No. 1.04 mm diameter wires
 - 6 mm² total cross section area

All the above ratings are for one twin cable with or without an earth conductor.

Electrical Accessories — for power circuits these include cooker control units and fused connector units for fixed appliances such as immersion heaters, water heaters and refrigerators.

Socket Outlets — these may be single or double outlets, switched or unswitched, surface or flush mounted and may be fitted with indicator lights. Recommended fixing heights are —

- **Floor**
 - General: 150 min.
 - For the elderly: 825 - 900
 - For the disabled: 1200

Plugs —
- earth - green / yellow cable
- neutral - blue cable
- cable grip
- cap screw
- BS 1363 plug
- cartridge fuse — up to 720 watt - 3 amp
 - up to 3000 watt - 13 amp
- live - brown cable
Power Circuits — in new domestic electrical installations the ring main system is usually employed instead of the older system of having each socket outlet on its own individual fused circuit with unfused round pin plugs. Ring circuits consist of a fuse or miniature circuit breaker protected subcircuit with a 32 amp rating of a live conductor, neutral conductor and an earth looped from socket outlet to socket outlet. Metal conduit systems do not require an earth wire providing the conduit is electrically sound and earthed. The number of socket outlets per ring main is unlimited but a separate circuit must be provided for every 100 m² of floor area. To conserve wiring, spur outlets can be used as long as the total number of spur outlets does not exceed the total number of outlets connected to the ring and that there is not more than two outlets per spur.

Typical Ring Main Wiring Diagram —
Lighting Circuits ~ these are usually wired by the loop-in method using an earthed twin cable with a 6 amp fuse or miniature circuit breaker protection. In calculating the rating of a lighting circuit an allowance of 100 watts per outlet should be used. More than one lighting circuit should be used for each installation so that in the event of a circuit failure some lighting will be in working order.

Electrical Accessories ~ for lighting circuits these consist mainly of switches and lampholders, the latter can be wall mounted, ceiling mounted or pendant in format with one or more bulb or tube holders. Switches are usually rated at 5 amps and are available in a variety of types such as double or 2 gang, dimmer and pull or pendant switches. The latter must always be used in bathrooms.
Gas Supply — potential consumers of mains gas may apply to their local utilities supplier for connection, e.g. Transco (Lattice Group plc). The cost is normally based on a fee per metre run. However, where the distance is considerable, the gas authority may absorb some of the cost if there is potential for more customers. The supply, appliances and installation must comply with the safety requirements made under the Gas Safety (Installation and Use) Regulations, 1998, and Part J of the Building Regulations.

Typical Gas Supply Arrangement ~

For alternative gas supply arrangements see following page
Gas Service Pipes ~

1. Whenever possible the service pipe should enter the building on the side nearest to the main.
2. A service pipe must not pass under the foundations of a building.
3. No service pipe must be run within a cavity but it may pass through a cavity by the shortest route.
4. Service pipes passing through a wall or solid floor must be enclosed by a sleeve or duct which is end sealed with mastic.
5. No service pipe shall be housed in an unventilated void.
6. Suitable materials for service pipes are copper (BS EN 1057) and steel (BS 1387). Polyethylene (BS 7281 or BS EN 1555-2) is normally used underground.

Typical Gas Supply Arrangement ~

For preferred method of entry see previous page
Gas Fires ~ for domestic use these are classified as a gas burning appliance with a rated input of up to 60 kW and must be installed in accordance with minimum requirements set out in Part J of the Building Regulations. Most gas fires connected to a flue are designed to provide radiant and convected heating whereas the room sealed balanced flue appliances are primarily convector heaters.

Typical Examples ~

- convected warm air
- canopy or hood
- fire bars giving off radiant heat
- firebrick backing
- baffle
- gas burner
- tiled hearth
- air inlet

125 mm thick solid floor

- consolidated hardcore
- air drawn in via external terminal
- terminal
- inlet duct
- products of combustion expelled at terminal via outlet duct
Gas Fire Flues ~ these can be defined as a passage for the discharge of the products of combustion to the outside air and can be formed by means of a chimney, special flue blocks or by using a flue pipe. In all cases the type and size of the flue as recommended in Approved Document J, BS EN 1806 and BS 5440 will meet the requirements of the Building Regulations.

Typical Single Gas Fire Flues ~

Flue Size Requirements:

1. No dimension should be less than 63 mm.
2. Flue for a decorative appliance should have a minimum dimension measured across the axis of 175 mm.
3. Flues for gas fires - min. area = 12000 mm2 if round, 16500 mm2 if rectangular and having a minimum dimension of 90 mm.
4. Any other appliance should have a flue with a cross-sectional area at least equal to the outlet size of the appliance.

Flue Blocks ~

- ridge terminal
- insulated ridge flue pipe connected to ridge terminal
- clay/ceramic flue blocks to BS EN 1806
- fireplace recess units

90 x 183 (nom.) flue, minimum cross sectional area 16500 mm2
Fire Protection of Services Openings ~ penetration of compartment walls and floors (zones of restricted fire spread, e.g., flats in one building), by service pipes and conduits is very difficult to avoid. An exception is where purpose built service ducts can be accommodated. The Building Regulations, Approved Document B3:Section 9 determines that where a pipe passes through a compartment interface, it must be provided with a proprietary seal. Seals are collars of intumescent material which expands rapidly when subjected to heat, to form a carbonaceous charring. The expansion is sufficient to compress warm plastic and successfully close a pipe void for up to 4 hours.

In some circumstances fire stopping around the pipe will be acceptable, provided the gap around the pipe and hole through the structure are filled with non-combustible material. Various materials are acceptable, including reinforced mineral fibre, cement and plasters, asbestos rope and intumescent mastics.

Pipes of low heat resistance, such as PVC, lead, aluminium alloys and fibre cement may have a protective sleeve of non-combustible material extending at least 1 m either side of the structure.
Open Fireplaces ~ for domestic purposes these are a means of providing a heat source by consuming solid fuels with an output rating of under 50 kW. Room-heaters can be defined in a similar manner but these are an enclosed appliance as opposed to the open recessed fireplace.

Components ~ the complete construction required for a domestic open fireplace installation is composed of the hearth, fireplace recess, chimney, flue and terminal.

See also BS 5854: Code of practice for flues and flue structures in buildings.
Open Fireplace Recesses ~ these must have a constructional hearth and can be constructed of bricks or blocks of concrete or burnt clay or they can be of cast insitu concrete. All fireplace recesses must have jambs on both sides of the opening and a backing wall of a minimum thickness in accordance with its position and such jambs and backing walls must extend to the full height of the fireplace recess.

Typical Examples ~

![Diagram showing dimensions and construction details for open fireplace recesses.](image-url)
Traditional Fireplace Details ~

*200 mm min. if fireplace opening >500 mm x 550 mm

square lined flue of solid non-combustible blocks or bricks

rebated flue liners to BS EN 1457

fireplace surround to BS 1251 fixed to wall with screws through cast-in fixing lugs

25 mm wide non-combustible tape forming expansion joint

BS 1251 pcc lintel or hood unit - see detail below

cm./sand screed

superimposed hearth

ground floor

NB. in solid floor construction the constructional hearth is an integral part of the oversite concrete bed

225 mm diameter hole for flue

1008 mm long x 443 mm wide x 65 mm thick precast concrete raft lintel

precast concrete insert piece

TYPICAL PCC THROAT OR FIREPLACE HOOD UNIT

760 mm long x 335 mm wide x 350 mm high precast concrete throat gathering unit

compacted hardcore

rubble filled void

constructional hearth

half brick fender wall

ground level

dpc

1:2:4 lime: sand: broken brick filling
corrugated paper lining to form an expansion joint

throat

flue gathering

BS 1251 fireback
Open Fireplace Chimneys and Flues – the main functions of a chimney and flue are to:

1. Induce an adequate supply of air for the combustion of the fuel being used.
2. Remove the products of combustion.

In fulfilling the above functions a chimney will also encourage a flow of ventilating air promoting constant air changes within the room which will assist in the prevention of condensation.

Approved Document J recommends that all flues should be lined with approved materials so that the minimum size of the flue so formed will be 200mm diameter or a square section of equivalent area. Flues should also be terminated above the roof level as shown, with a significant increase where combustible roof coverings such as thatch or wood shingles are used.
Typical Flue Liner and Chimney Pot Details ~

- Clay rebated flue liner to BS 1181
- Clay chimney pot or flue terminal to BS EN 13502

Typical Outlet or Terminal Details ~

- Clay chimney pot or flue terminal
- Oversailing or offset brick courses forming capping
- Frost resistant or special quality bricks jointed in cement mortar 1:3
- 1:3 cement mortar weathering or flaunching
- Quarter brick offsets
- High bond strength damp-proof course
- Clay flue liners jointed in cm.mt.

- Projecting clay flue liner as terminal
- Precast concrete weathered coping
- 55mm overhang
- Ordinary quality clay bricks jointed in cement:lime:sand mortar 1:1/2:4-41/2

Ref. BS EN 13502: Chimneys. Requirements and test methods for clay/ceramic flue terminals.
Typical Chimney and Roof Junction Details

25mm turned into brick joint, wedged and pointed

70° angle

to be dressed over soakers

STEPPED FLASHING

roof coverings

25mm wide turn in

to be dressed over tiles

APRON FLASHING

soakers

apron flashing

BACK GUTTER

to be dressed over fillet

NB all flashings aprons soakers and gutter linings to be formed out of Code 4 lead or other durable material(s)

Ref. BS EN 1443: Chimneys. General Requirements.
Chimney construction —

Typical chimney outlet

Clay bricks — Frost resistant quality. Min. density 1500 kg/m³.

Calcium silicate bricks — Min. compressive strength 20.5 N/mm² (27.5 N/mm² for cappings).

Precast concrete masonry units — Min. compressive strength 15 N/mm².

Mortar — A relatively strong mix of cement and sand 1:3. Cement to be specified as sulphate resisting because of the presence of soluble sulphates in the flue gas condensation.

Chimney pot — The pot should be firmly bedded in at least 3 courses of brickwork to prevent it being dislodged in high winds.

Flashings and dpcs — Essential to prevent water which has permeated the chimney, penetrating into the building. The minimum specification is Code 4 lead (1.80mm), Code 3 (1.32mm) for soakers. This should be coated both sides with a solvent-based bituminous paint to prevent the risk of corrosion when in contact with cement. The lower dpc may be in the form of a tray with edges turned up 25mm, except where it coincides with bedded flashings such as the front apron upper level. Here weep holes in the perpends will encourage water to drain. The inside of the tray is taken through a flue lining joint and turned up 25mm.
Combustion Air ~ it is a Building Regulation requirement that in the case of open fireplaces provision must be made for the introduction of combustion air in sufficient quantity to ensure the efficient operation of the open fire. Traditionally such air is taken from the volume of the room in which the open fire is situated, this can create air movements resulting in draughts. An alternative method is to construct an ash pit below the hearth level fret and introduce the air necessary for combustion via the ash by means of a duct.

Typical Details ~

- Rebated flue liners to BS EN 1457
- Internal wall finish
- Fireplace surround to BS 1251
- Heat resisting tape
- BS 1251 pcc lintel or hood unit - see page 706
- Open hearth fret
- Deepening bar
- Air flow control
- Superimposed hearth
- 125mm thick mass concrete floor
- Hardcore bed
- 100mm dia. smoke tight & non-combustible duct connected to the external air

*min. square or rectangular dimension, otherwise min. 200 mm dia. or equivalent area

NB. External ash box removal is permitted if opening is sealed with a non-combustible cover

Ash pit constructed of non-combustible material of not less than 50mm thickness
Lightweight Pumice Chimney Blocks — these are suitable as a flue system for solid fuels, gas and oil. The highly insulative properties provide low condensation risk, easy installation as a supplement to existing or on-going construction and suitability for use with timber frame and thatched dwellings, where fire safety is of paramount importance. Also, the natural resistance of pumice to acid and sulphurous smoke corrosion requires no further treatment or special lining. A range of manufacturer’s accessories allow for internal use with lintel support over an open fire or stove, or as an external structure supported on its own foundation. Whether internal or external, the units are not bonded in, but supported on purpose made ties at a maximum of 2 metre intervals.

<table>
<thead>
<tr>
<th>flue (mm)</th>
<th>plan size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 dia.</td>
<td>390 x 390</td>
</tr>
<tr>
<td>200 dia.</td>
<td>440 x 440</td>
</tr>
<tr>
<td>230 dia.</td>
<td>470 x 470</td>
</tr>
<tr>
<td>260 square</td>
<td>500 x 500</td>
</tr>
<tr>
<td>260 x 150 oblong</td>
<td>500 x 390</td>
</tr>
</tbody>
</table>

Open Fireplaces and Flues

712
Telephone Installations—unlike other services such as water, gas and electricity, telephones cannot be connected to a common mains supply. Each telephone requires a pair of wires connecting it to the telephone exchange. The external supply service and connection to the lead-in socket is carried out by telecommunication engineers. Internal extensions can be installed by the site electrician.

Typical Supply Arrangements

- Underground supply cables must be installed when the building is constructed— they are hidden and therefore have little or no effect on the surrounding environment.

Underground Supply Cable

- **External Wall**
 - 350 min.

- **Underground Supply Cable**
 - In 50 mm plastic duct

Overhead Supply Cable

- **Wall Hook at or near eaves**
 - 19 mm internal diameter duct sealed at both ends

- Overhead supply cables are smaller and cheaper than underground supply cables—convenient but obtrusive

Lead-In Socket

- Extension telephone if required

Socket

- Extension telephone if required
Electronic Installations – in addition to standard electrical and telecommunication supplies into buildings, there is a growing demand for cable TV, security cabling and broadband access to the Internet. Previous construction practice has not foreseen the need to accommodate these services from distribution networks into buildings, and retrospective installation through underground ducting is both costly and disruptive to the structure and surrounding area, particularly when repeated for each different service. Ideally there should be a common facility integral with new construction to permit simple installation of these communication services at any time. A typical installation will provide connection from a common external terminal chamber via underground ducting to a terminal distribution box within the building. Internal distribution is through service voids within the structure or attached trunking.

Electronic communication ducts

Typical lateral distribution duct
(see also Chapter 14 – Building Services Handbook)

INDEX

Access for disabled, 540–2
Access to sites, 80
Accommodation on sites, 81
Active earth pressures, 226
Adhesives, 429
Admixtures, 245, 329
Aerated concrete floor units, 588
Aggregate samples, 100
Air lock hopper, 207
Air test, 667, 685
Air tightness, infiltration and permeability, 431, 527, 530, 532–3, 539
Alternating tread stair, 604
Aluminium alloy infill panels, 503
Aluminium alloy windows, 354, 356
Anchor bars, 380
Anchor straps, 468, 577
Anchorage, 404–6, 408
Angle Piling, 273
Angledozers, 147
Angles, 113, 409–10
Angles of repose, 225, 236–7, 254
Apex hinges, 424
Approved Documents, 50–51
Approved inspector, 53
Apron cladding panels, 513
Apron flashing, 709–10
Arches, 331–4
Asphalt tanking, 247–8
Attached piers, 299–300, 303–4
Augers, 70, 209–10
Automatic level, 111
Axial grid, 45
Axonometric projection, 23
Backacter, 146, 153, 241
Backgutter, 709
Backshore, 136
Balanced flue, 701
Balloon frame, 372
Balusters, 597, 600–3, 606, 609, 617, 619
Balustrade, 13, 609–10, 615, 617–9
Bar chart, 32, 80
Bargeboard, 476
Barrel vaults, 9, 487–9
Basement excavation, 238–41
Basement insulation, 250
Basements, 238–50
Basic forms and types of structure, 5–10
Basic formwork, 393–7
Basic module grid, 44
Basic roof forms, 435–7
Basins, 680
Batch mixers, 175–6
Baths, 681
Bay window, 349
Beam and block floor, 568
Beam and pot floor, 589
Beam and slab raft, 203
Beam formwork, 394–5
Beam to column connection, 401, 414–5
Beam design:
 concrete, 381–3
 steel, 418–20
 timber, 580–82
Beams, 380, 410–5, 426, 430–31
Bearing piles, 205
Beech, 642
Benchmark, 64, 107, 111–2
Bending moment, 418, 422, 581
Bentonite, 208, 282–3
Bib tap, 676
Binder, 634
Binders/binding:
 reinforcement, 203, 380, 384–6
 shoring, 136, 240
Birdcage scaffold, 129
Block plan, 26, 39
Block walls, 549–52
Blockboard, 643
Bloom base, 202
Boarded web girder, 430
Bolection moulding, 640
Bolt box, 399, 414
Bonding, bricks, 297–304
Bonnet tiles, 445, 449
Boot lintels, 335
Bore hole, 65, 72
Borrowed light, 555
Bottom shore, 136
Box beam, 430
Box caisson, 265
Box pile foundation, 215
Braced structures, 433
Breather membrane, 444, 447–8, 498
Brick:
 corbel, 309–10, 708, 710
 dentil, 310
 dog-tooth, 310
 infill panels, 502
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick (continued)</td>
<td></td>
</tr>
<tr>
<td>internal walls</td>
<td>548</td>
</tr>
<tr>
<td>jointing and pointing</td>
<td>306</td>
</tr>
<tr>
<td>panel walls</td>
<td>499</td>
</tr>
<tr>
<td>plinths</td>
<td>308–9</td>
</tr>
<tr>
<td>purpose made</td>
<td>308</td>
</tr>
<tr>
<td>retaining walls</td>
<td>224, 227–8, 233–4</td>
</tr>
<tr>
<td>specials</td>
<td>307–8</td>
</tr>
<tr>
<td>strength</td>
<td>327</td>
</tr>
<tr>
<td>testing</td>
<td>98</td>
</tr>
<tr>
<td>underpinning</td>
<td>269</td>
</tr>
<tr>
<td>Brick bonding:</td>
<td></td>
</tr>
<tr>
<td>attached piers</td>
<td>303–4</td>
</tr>
<tr>
<td>English bond</td>
<td>299</td>
</tr>
<tr>
<td>Flemish bond</td>
<td>300</td>
</tr>
<tr>
<td>principles</td>
<td>298</td>
</tr>
<tr>
<td>quetta bond</td>
<td>233–4</td>
</tr>
<tr>
<td>special bonds</td>
<td>233, 297, 301–2</td>
</tr>
<tr>
<td>stack bond</td>
<td>302</td>
</tr>
<tr>
<td>stretcher bond</td>
<td>298</td>
</tr>
<tr>
<td>Brickwork cladding support</td>
<td>500</td>
</tr>
<tr>
<td>Bridging of dpc</td>
<td>322</td>
</tr>
<tr>
<td>British Standards</td>
<td>56</td>
</tr>
<tr>
<td>Brown field</td>
<td>291</td>
</tr>
<tr>
<td>Buckling factor</td>
<td>387</td>
</tr>
<tr>
<td>Builders plant</td>
<td>144–80</td>
</tr>
<tr>
<td>Building control</td>
<td>53</td>
</tr>
<tr>
<td>Building Regulations</td>
<td>50–5</td>
</tr>
<tr>
<td>application</td>
<td>55</td>
</tr>
<tr>
<td>exemptions</td>
<td>54</td>
</tr>
<tr>
<td>Building surveyor</td>
<td>27–30</td>
</tr>
<tr>
<td>Built environment</td>
<td>2–4</td>
</tr>
<tr>
<td>Built-up roofing felt</td>
<td>461, 464</td>
</tr>
<tr>
<td>Bulk density</td>
<td>78</td>
</tr>
<tr>
<td>Bulking of sand</td>
<td>99</td>
</tr>
<tr>
<td>Bulldozer</td>
<td>147</td>
</tr>
<tr>
<td>Bus bar</td>
<td>692–3</td>
</tr>
<tr>
<td>Cab crane control</td>
<td>170</td>
</tr>
<tr>
<td>Cable sizing</td>
<td>696</td>
</tr>
<tr>
<td>Caissons</td>
<td>265–6</td>
</tr>
<tr>
<td>Calculated brickwork</td>
<td>327–8</td>
</tr>
<tr>
<td>Calculation of storage space</td>
<td>94</td>
</tr>
<tr>
<td>Camber arch</td>
<td>332</td>
</tr>
<tr>
<td>Cantilever:</td>
<td></td>
</tr>
<tr>
<td>beam</td>
<td>380</td>
</tr>
<tr>
<td>foundations</td>
<td>204</td>
</tr>
<tr>
<td>retaining wall</td>
<td>229</td>
</tr>
<tr>
<td>scaffold</td>
<td>131</td>
</tr>
<tr>
<td>stairs</td>
<td>608</td>
</tr>
<tr>
<td>structures</td>
<td>432</td>
</tr>
<tr>
<td>Cap tendons</td>
<td>405</td>
</tr>
<tr>
<td>Carbon emissions</td>
<td>531–2</td>
</tr>
<tr>
<td>Carbon index</td>
<td>531</td>
</tr>
<tr>
<td>Cartridge fuse</td>
<td>696</td>
</tr>
<tr>
<td>Cased pile foundation</td>
<td>216</td>
</tr>
<tr>
<td>Casein adhesive</td>
<td>429</td>
</tr>
<tr>
<td>Casement windows:</td>
<td></td>
</tr>
<tr>
<td>ironmongery</td>
<td>344</td>
</tr>
<tr>
<td>metal</td>
<td>343, 356</td>
</tr>
<tr>
<td>timber</td>
<td>341–2</td>
</tr>
<tr>
<td>Castellated beam</td>
<td>412</td>
</tr>
<tr>
<td>Cast-in wall ties</td>
<td>502</td>
</tr>
<tr>
<td>Cast insitu diaphragm walls</td>
<td>243, 282</td>
</tr>
<tr>
<td>Cast insitu pile foundation</td>
<td>219</td>
</tr>
<tr>
<td>Cast-on finishes</td>
<td>516</td>
</tr>
<tr>
<td>Cavity barrier/closer</td>
<td>323, 373, 447</td>
</tr>
<tr>
<td>Cavity tray</td>
<td>333–4</td>
</tr>
<tr>
<td>Cavity walls</td>
<td>312–3, 326, 535</td>
</tr>
<tr>
<td>Cedar</td>
<td>641</td>
</tr>
<tr>
<td>Ceilings:</td>
<td></td>
</tr>
<tr>
<td>plasterboard</td>
<td>562, 629, 631</td>
</tr>
<tr>
<td>suspended</td>
<td>630–3</td>
</tr>
<tr>
<td>Cellular basement</td>
<td>242</td>
</tr>
<tr>
<td>Cement</td>
<td>257, 329</td>
</tr>
<tr>
<td>Cement grouts</td>
<td>284</td>
</tr>
<tr>
<td>Central heating</td>
<td>686–9</td>
</tr>
<tr>
<td>Centres</td>
<td>332, 334</td>
</tr>
<tr>
<td>Certificates of ownership</td>
<td>39, 43</td>
</tr>
<tr>
<td>Channel floor units</td>
<td>589</td>
</tr>
<tr>
<td>Channels</td>
<td>409–11</td>
</tr>
<tr>
<td>Checked rebates in walls</td>
<td>338</td>
</tr>
<tr>
<td>Chemical dpc</td>
<td>320–1</td>
</tr>
<tr>
<td>Chemical grouts</td>
<td>284</td>
</tr>
<tr>
<td>Chezy formula</td>
<td>668</td>
</tr>
<tr>
<td>Chimney pot</td>
<td>21, 708</td>
</tr>
<tr>
<td>Chimneys</td>
<td>704, 707–10, 712</td>
</tr>
<tr>
<td>Chipboard</td>
<td>570, 644</td>
</tr>
<tr>
<td>Circular bay window</td>
<td>349</td>
</tr>
<tr>
<td>Circular column</td>
<td>384</td>
</tr>
<tr>
<td>CI/SfB system</td>
<td>60</td>
</tr>
<tr>
<td>Cisterns</td>
<td>671–4, 677, 682, 686–8</td>
</tr>
<tr>
<td>Cladding panels</td>
<td>500–1</td>
</tr>
<tr>
<td>Clamp vibrator</td>
<td>179</td>
</tr>
<tr>
<td>Classification of piled foundations</td>
<td>205–6</td>
</tr>
<tr>
<td>Clay cutter</td>
<td>207</td>
</tr>
<tr>
<td>Clear glass</td>
<td>351</td>
</tr>
<tr>
<td>Client</td>
<td>47</td>
</tr>
<tr>
<td>Climbing cranes</td>
<td>169, 173</td>
</tr>
<tr>
<td>Climbing formwork</td>
<td>231</td>
</tr>
<tr>
<td>Closed couple roof</td>
<td>439</td>
</tr>
<tr>
<td>Codes of Practice</td>
<td>56</td>
</tr>
<tr>
<td>Cofferdams</td>
<td>263–4</td>
</tr>
<tr>
<td>Coil wall ties</td>
<td>230</td>
</tr>
<tr>
<td>Cold bridging</td>
<td>323, 356, 536–7</td>
</tr>
<tr>
<td>Cold deck</td>
<td>460, 463</td>
</tr>
<tr>
<td>Cold water installations</td>
<td>669–72</td>
</tr>
<tr>
<td>Collar roof</td>
<td>439</td>
</tr>
<tr>
<td>Column design</td>
<td>386–7, 421</td>
</tr>
<tr>
<td>Column formwork</td>
<td>396–7</td>
</tr>
<tr>
<td>Column to column connection</td>
<td>400, 415</td>
</tr>
<tr>
<td>Column underpinning</td>
<td>274</td>
</tr>
<tr>
<td>Columns</td>
<td>384, 410–11, 414–6</td>
</tr>
<tr>
<td>Combined column foundation</td>
<td>202</td>
</tr>
</tbody>
</table>
Combined method, 525
Combined system, 661
Combustion air, 711
Communicating information:
 bar chart 32, 80
elevations, 22, 25
floor plans, 22, 25, 38
isometric projection, 23
orthographic projection, 22
perspective projection, 24
sketches, 21
Complete excavation, 240
Completion certificate, 30
Composite beams and joists, 430–1
Composite boarding, 643–4
Composite floors, 379, 589
Composite lintels, 335
Composite panel, 503
Composite piled foundation, 216–7
Compound sections, 411
Compressed strawboard, 643
Compressible joints, 499, 551, 612–3
Concrete:
 admixtures, 245
 beam design, 381–3
 claddings, 512–4
 column design, 385–7
 floor screed, 573–4
mixers, 175–6
placing, 179
production, 257–62
pumps, 178
slab design, 381–3
stairs, 607–15
surface finishes, 515
test cubes, 101
testing, 102–4
Concrete production:
 designated mix, 261
 designed mix, 261
materials, 257
prescribed mix, 261
site storage, 84, 97, 258
specification, 261
standard mix, 261
supply, 262
volume batching, 259
weight batching, 260
Concreting, 174
Concreting plant, 174–80
Conductivity, 520–1
Conduit and fittings, 694–5
Conoid roof, 9, 489
Consolidation of soil, 79
Construction activities, 18, 32
Construction, Design and Management
 Regs., 47
 Construction joints, 117, 246, 551
 Construction Products Directive, 58
 Construction Regulations, 46–7
 Consumer control unit, 690–3, 697–8
 Contaminated subsoil, 291–3
 Contiguous piling, 281
 Continuous column foundations, 201
 Contraction joints, 117, 551
 Controlling dimensions, 44–5
 Controlling grid and lines, 44–5
 Cooker circuit cable, 696
 Coping stones, 223–4, 314
 Corbelled brickwork, 309–10, 708, 710
 Core drilling, 71
 Core structures, 433
 Cored floor units, 589
 Cor-ply beam, 430
 Cornice, 640
 Corrugated sheet, 475–8
 Coulomb’s line, 78
 Coulomb’s wedge theory, 237
 Counter batten, 448
 Couple roof, 439
 Cove mouldings, 561, 629
 Cover flashing, 709
 CPI System of Coding, 59
 Cracking in walls, 188
 Cradles, 130
 Crane operation, 170
 Crane rail track, 172
 Crane skips, 174
 Cranes, 162–73
 Cranked slab stairs, 607, 613
 Crawler crane, 166
 Crib retaining wall, 235
 Crosswall construction, 370–1
 Crown hinges, 424
 Curtain walling, 508–11
 Curved laminated timber, 428
 Curved tendons, 405
 Cut and fill, 63, 251
 Cylinders, 678

 Dado panel and rail, 640
 Damp proof course, 317–23
 Damp proof course materials, 318–9
 Damp proof membrane, 317, 324
 Datum, 107–12
 Datum post, 107, 110
 Dead loads, 33–4, 140, 195
 Dead shoring, 134–5, 140–1
 Decorative suspended ceiling, 633
 Deep basements, 243–4
 Deep strip foundation, 201
 Defects in painting, 637
 Deflection, 420, 430, 582

717
Index

Demountable partitions, 555–6
Dense monolithic concrete, 245
Dentil course, 310
Density of materials, 34, 520–1
Design of foundations, 193–5, 200
Designer, 47
Dewatering, 275–9
Diaphragm floatvalve, 676
Diaphragm walls, 243, 282–3, 316
Diesel hammers, 221
Dimensional coordination, 44–5
Dimensional grids, 44–5
Direct cold water system, 671
Direct hot water system, 673
Displacement pile foundation, 205, 211, 215–9
Disturbed soil sample, 66, 69
Documents for construction, 19
Dog leg stair, 605–6
Dog toothed brickwork, 310
Domelights, 497
Domes, 9, 485–6
Domestic drainage, 648–68
Domestic electrical installations, 690–8
Domestic floor finishes, 569–70
Domestic ground floors, 565–8
Domestic heating systems, 686–9
Doors:
 external, 361–3
 fire, 624–7
 frames, 364, 623–4
 glazed double swing, 628
 industrial, 366–9
 internal, 361, 620–3
 ironmongery, 365
 linings, 620, 622
 performance, 361
 sliding, 366, 368
 types, 362–3
Door set, 623–4
Dormer window, 437, 462
Double acting hammers, 221
Double action floor spring, 628
Double flying shore, 138
Double glazing, 342, 348, 353–6
Double hung sash windows, 345–6
Double lap tiling, 445–7, 449–50
Double layer grids, 485
Double rafter roof, 440
Double swing doors, 628
Douglas fir, 641
Dovetail anchor slots, 499, 502
Draft for Development, 56
Draglines, 154
Drainage:
 effluent, 648
 gradient, 665, 668
 paved areas, 653
 pipe sizes, 668
 proportional depth, 668
 roads, 654–5
 simple, 659–66
 systems, 659–61
 testing, 667
Drained cavities, 249
Draught proofing, 539
Drawings:
 axonometric projection, 23
 construction process, 20
 hatchings, symbols and notation, 35–8
 isometric projection, 23
 perspective projection, 24
 plans and elevations, 25
 sketches, 21
Drilling rig, 207–10
Driven insitu piled foundations, 218
Drop arch, 332
Drop hammer, 207, 213, 216–8, 220
Dry linings, 559–61
Dry rot, 471–2
Dumpers, 157, 177
Dumpling, 239
Dynamic compaction, 286, 289
Earth pressures, 226, 236
Earthworks for roads, 115
Eaves:
 closure piece, 476–7
 details, 446–8, 452–3, 460, 464, 534
 filler piece, 476–7
 ventilation, 446, 452–3, 460, 464–7
Effective height of walls, 328
Effective length of columns, 421
Effective thickness of walls, 326, 328
Effluents, 648
Electrical cables, 696
Electrical installations, 694–8
Electrical site lighting, 86–8
Electricity:
 domestic supply, 690–3
 supply to sites, 89
Elevations, 25, 22
End bearing pile foundation, 205
Energy efficiency, 527–8, 532
Energy rating, 530–1
Energy roof system, 478
English bond, 299
Environment, 2–4
Equivalent area, 386–7
Espagnolette, 348
European spruce, 641
European Standards, 57
Excavating machines, 151–5, 241
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gantry scaffolding, 133</td>
</tr>
<tr>
<td>Garage, 304–5</td>
</tr>
<tr>
<td>Garden wall bonds, 301</td>
</tr>
<tr>
<td>Gas:</td>
</tr>
<tr>
<td>fires, 701</td>
</tr>
<tr>
<td>flues, 701–2, 712</td>
</tr>
<tr>
<td>service intake, 699–700</td>
</tr>
<tr>
<td>supply, 699</td>
</tr>
<tr>
<td>Gas resistant membranes, 324–5</td>
</tr>
<tr>
<td>Gate valve, 676–7</td>
</tr>
<tr>
<td>Gauge box, 259</td>
</tr>
<tr>
<td>Geodistic dome, 485</td>
</tr>
<tr>
<td>Girders, 411, 479, 481–2</td>
</tr>
<tr>
<td>Glass and glazing, 351–8</td>
</tr>
<tr>
<td>Glass block wall, 359–60</td>
</tr>
<tr>
<td>Glass manifestation, 358</td>
</tr>
<tr>
<td>Glazed cladding, 506–7</td>
</tr>
<tr>
<td>Gluelam, 426–8</td>
</tr>
<tr>
<td>Grab bucket, 154–5</td>
</tr>
<tr>
<td>Graders, 149</td>
</tr>
<tr>
<td>Granular soil shell, 207</td>
</tr>
<tr>
<td>Green field, 291</td>
</tr>
<tr>
<td>Grillage foundation, 202</td>
</tr>
<tr>
<td>Groins, 489</td>
</tr>
<tr>
<td>Ground anchors, 243, 283, 408</td>
</tr>
<tr>
<td>Ground freezing, 285</td>
</tr>
<tr>
<td>Ground vibration, 286–8</td>
</tr>
<tr>
<td>Ground water, 63, 72, 275</td>
</tr>
<tr>
<td>Ground water control, 276–8</td>
</tr>
<tr>
<td>Grouting-subsoil, 284</td>
</tr>
<tr>
<td>Grouting-tiles, 564</td>
</tr>
<tr>
<td>Guard rail, 123–5, 127–8, 131–2</td>
</tr>
<tr>
<td>Gusset plate, 425, 474, 477</td>
</tr>
<tr>
<td>Half hour fire door, 625</td>
</tr>
<tr>
<td>Hammer head junction, 114</td>
</tr>
<tr>
<td>Hand auger, 70</td>
</tr>
<tr>
<td>Hand auger holes, 65</td>
</tr>
<tr>
<td>Handrail, 597–8, 600, 602, 606, 609–10, 615–7, 619</td>
</tr>
<tr>
<td>Hardwoods, 642</td>
</tr>
<tr>
<td>Health and Safety at Work, etc. Act, 46, 48</td>
</tr>
<tr>
<td>Hearths, 704–6, 711</td>
</tr>
<tr>
<td>Helical binding, 384–5</td>
</tr>
<tr>
<td>Helical stairs, 609</td>
</tr>
<tr>
<td>Helmets, 213, 217</td>
</tr>
<tr>
<td>Hemispherical dome, 486</td>
</tr>
<tr>
<td>Herringbone strutting, 576</td>
</tr>
<tr>
<td>High performance window, 342</td>
</tr>
<tr>
<td>Highway dumpers, 157</td>
</tr>
<tr>
<td>Hinge or pin joints, 424</td>
</tr>
<tr>
<td>Hip tiles, 445, 449</td>
</tr>
<tr>
<td>Hoardings, 81–5</td>
</tr>
<tr>
<td>Hoists, 159–60</td>
</tr>
<tr>
<td>Holding down bolts, 399, 414, 424–5</td>
</tr>
<tr>
<td>Hollow box floor units, 588</td>
</tr>
<tr>
<td>Hollow pot floor, 586–7</td>
</tr>
<tr>
<td>Hollow steel sections, 409–10</td>
</tr>
<tr>
<td>Horizontal shore, 137–9</td>
</tr>
<tr>
<td>Horizontal sliding sash window, 347</td>
</tr>
<tr>
<td>Hot water:</td>
</tr>
<tr>
<td>cylinders, 678</td>
</tr>
<tr>
<td>direct system, 673</td>
</tr>
<tr>
<td>expansion vessel, 675</td>
</tr>
<tr>
<td>heating systems, 686–9</td>
</tr>
<tr>
<td>indirect system, 674</td>
</tr>
<tr>
<td>mains fed, 675</td>
</tr>
<tr>
<td>House Longhorn beetle, 469</td>
</tr>
<tr>
<td>Hull core structures, 433</td>
</tr>
<tr>
<td>Hyperbolic paraboloid roof, 9, 490–1</td>
</tr>
<tr>
<td>Immersion heater cable, 696</td>
</tr>
<tr>
<td>Inclined slab stair, 607, 610</td>
</tr>
<tr>
<td>Independent scaffold, 124</td>
</tr>
<tr>
<td>Indirect cold water system, 672</td>
</tr>
<tr>
<td>Indirect cylinder, 678</td>
</tr>
<tr>
<td>Indirect hot water system, 674</td>
</tr>
<tr>
<td>Industrial doors, 366–9</td>
</tr>
<tr>
<td>Infill panel walls, 501–4</td>
</tr>
<tr>
<td>Inspection chambers, 648, 654, 659–65</td>
</tr>
<tr>
<td>Insulating dpc, 323, 537</td>
</tr>
<tr>
<td>Insulation of basements, 250</td>
</tr>
<tr>
<td>Insulation:</td>
</tr>
<tr>
<td>sound, 592–6</td>
</tr>
<tr>
<td>thermal, 517–39</td>
</tr>
<tr>
<td>Integrity, 625, 627</td>
</tr>
<tr>
<td>Interest on capital outlay costing, 145</td>
</tr>
<tr>
<td>Internal asphalt tanking, 248</td>
</tr>
<tr>
<td>Internal doors, 361, 620–8</td>
</tr>
<tr>
<td>Internal drop hammer, 207, 216, 218</td>
</tr>
<tr>
<td>Internal elements, 545</td>
</tr>
<tr>
<td>Internal environment, 2</td>
</tr>
<tr>
<td>Internal partitions, 552–6</td>
</tr>
<tr>
<td>Internal walls:</td>
</tr>
<tr>
<td>block, 549–52, 593–4</td>
</tr>
<tr>
<td>brick, 548, 593–4</td>
</tr>
<tr>
<td>functions, 546</td>
</tr>
<tr>
<td>plaster finish, 557–8</td>
</tr>
<tr>
<td>plasterboard lining, 554–5, 559–62</td>
</tr>
<tr>
<td>types, 547</td>
</tr>
<tr>
<td>International Standards, 57</td>
</tr>
<tr>
<td>Intumescent collar, 703</td>
</tr>
<tr>
<td>Intumescent strips, 625–7</td>
</tr>
<tr>
<td>Inverted warm deck, 463</td>
</tr>
<tr>
<td>Iroko, 642</td>
</tr>
<tr>
<td>Ironmongery, 344, 365</td>
</tr>
<tr>
<td>Isolated foundations, 191, 202</td>
</tr>
<tr>
<td>Isometric projection, 23</td>
</tr>
<tr>
<td>Jack pile underpinning, 270</td>
</tr>
<tr>
<td>Jambs, 317, 323, 336, 338</td>
</tr>
<tr>
<td>Jarrah, 642</td>
</tr>
<tr>
<td>Jet grouting, 284, 286, 290</td>
</tr>
<tr>
<td>Jetted sumps, 277</td>
</tr>
</tbody>
</table>
Jetted well points, 278–9
Joinery production, 638–42
Joinery timbers, 641–2
Jointing and pointing, 306
Jointless suspended ceiling, 631
Joints:
basements, 246
blockwork, 551
drainage, 666
laminated timber, 426
portal frame, 423–5
roads, 117
Joists:
timber, 431, 565, 567, 575–82
steel, 410–1
Joist sizing – timber, 575, 580–2
Joist sizing – steel, 418–20
Kerbs, 119
Kelly bar, 208–10
Kentledge, 130, 222, 274
Kitemark, 56
Ladders, 123–4, 127
Laminated timber, 426–8
Land caissons, 265
Land reclamation, 291
Landings, 605–17
Lantern lights, 496
Large diameter piled foundations, 206, 210
Larssen sheet piling, 264
Latent defects, 27
Lateral restraint, 468, 575, 577–8
Lateral support:
basements, 244
walls, 442, 468, 577
Lattice beam, 413, 430, 479, 481–2
Lattice girder, 413
Lattice jib crane, 165
Leader – piling rig, 213
Lean-to roof, 439
Lens light, 496
Levelling, 110–12
Lift casting, 231
Lighting:
cable, 696
circuits, 692, 698
sites, 86–8
Lightweight decking, 484
Lightweight infill panels, 501, 503–4
Limiting U values, 528, 532–3
Lintels, 331, 335, 338, 548
Litzka beam, 412
Load-bearing concrete panels, 512
Load-bearing partitions, 545, 547–9, 552
Locating services, 106
Loft hatch, 539
Long span roofs, 479–85
Loop ties, 232
Lorries, 156
Lorry mounted cranes, 164–5
Low emissivity glass, 355
Luffing jib, 168
Maguire’s rule, 668
Mahogany, 642
Main beams, 7, 16, 415
Mandrel, 217
Manifestation of glass, 358
Manometer, 667, 685
Mansard roof, 437, 443
Masonry cement, 329
Masonry partitions, 552
Mass concrete retaining wall, 228
Mass retaining walls, 227–8
Mast cranes, 168
Mastic asphalt tanking, 247–8
Mastic asphalt to flat roofs, 464
Materials:
conductivity, 520–1
density, 34, 520–1
hoist, 159
storage, 92–7
testing, 98–104
weights, 33–4
Mechanical auger, 70
Meeting rails, 345–6
Meeting stiles, 347, 628
Metal casement windows, 343
Metal section decking, 379
Metal stairs, 616–8
Meter box, 690–1, 699–700
Methane, 324
Method statement, 31
Micro-bore heating, 688
Middle shore, 136
Middle third rule, 224
Mineral insulating cable, 694
Miniature circuit breaker, 692–3
Mixing concrete, 174–7, 259–61
Mobile cranes, 162–6
Mobile scaffold, 127
Modular coordination, 44–5
Modular ratio, 386
Mohr’s circle, 78
Moment of resistance, 141, 418
Monitor roof, 479, 481
Monogroup cable, 403
Monostrand caissons, 265
Monostrand anchorage, 406
Monostrand cable, 403
Mortar mixes, 329–30
Mortar strength, 327, 329–30
Morticing machine, 638
<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movement joint</td>
<td>117, 500, 551, 613</td>
</tr>
<tr>
<td>Mud-rotary drilling</td>
<td>71</td>
</tr>
<tr>
<td>Multi-purpose excavators</td>
<td>151, 155</td>
</tr>
<tr>
<td>Multi-span portal frames</td>
<td>423, 425</td>
</tr>
<tr>
<td>Multi-stage wellpoints</td>
<td>279</td>
</tr>
<tr>
<td>Multi-storey structures</td>
<td>432–3</td>
</tr>
<tr>
<td>Needle and pile underpinning</td>
<td>271</td>
</tr>
<tr>
<td>Needle design</td>
<td>140–1</td>
</tr>
<tr>
<td>Needles</td>
<td>134–9</td>
</tr>
<tr>
<td>Newel post</td>
<td>597, 600–3, 605–6</td>
</tr>
<tr>
<td>NHBC</td>
<td>27</td>
</tr>
<tr>
<td>Non-load-bearing partitions</td>
<td>545, 547, 552, 553–6</td>
</tr>
<tr>
<td>Non-residential buildings</td>
<td>304–5</td>
</tr>
<tr>
<td>Northlight barrel vault</td>
<td>489</td>
</tr>
<tr>
<td>Northlight roofs</td>
<td>479–80</td>
</tr>
<tr>
<td>Oak</td>
<td>642</td>
</tr>
<tr>
<td>Oedometer</td>
<td>79</td>
</tr>
<tr>
<td>Oil based paint</td>
<td>634</td>
</tr>
<tr>
<td>One hour fire door</td>
<td>626</td>
</tr>
<tr>
<td>One pipe heating</td>
<td>686</td>
</tr>
<tr>
<td>Open caissons</td>
<td>265</td>
</tr>
<tr>
<td>Open excavations</td>
<td>238</td>
</tr>
<tr>
<td>Open fireplaces</td>
<td>704–12</td>
</tr>
<tr>
<td>Open riser stairs</td>
<td>602–4, 614</td>
</tr>
<tr>
<td>Open suspended ceiling</td>
<td>633</td>
</tr>
<tr>
<td>Open web beam</td>
<td>412</td>
</tr>
<tr>
<td>Openings in walls</td>
<td></td>
</tr>
<tr>
<td>arches</td>
<td>331–4</td>
</tr>
<tr>
<td>heads</td>
<td>335, 338</td>
</tr>
<tr>
<td>jambs</td>
<td>336, 338</td>
</tr>
<tr>
<td>sills</td>
<td>337–8</td>
</tr>
<tr>
<td>support</td>
<td>332</td>
</tr>
<tr>
<td>threshold</td>
<td>338, 540</td>
</tr>
<tr>
<td>Oriel window</td>
<td>349</td>
</tr>
<tr>
<td>Oriented strand board</td>
<td>644</td>
</tr>
<tr>
<td>Orthographic projection</td>
<td>22</td>
</tr>
<tr>
<td>Out-of-service crane condition</td>
<td>169</td>
</tr>
<tr>
<td>Output and cycle times</td>
<td>146</td>
</tr>
<tr>
<td>Overcladding</td>
<td>501, 505</td>
</tr>
<tr>
<td>Overhead and forklift trucks</td>
<td>158</td>
</tr>
<tr>
<td>Pad foundation</td>
<td>191, 202, 384, 414, 423, 425</td>
</tr>
<tr>
<td>Pad foundation design</td>
<td>193</td>
</tr>
<tr>
<td>Pad template</td>
<td>109</td>
</tr>
<tr>
<td>Paint defects</td>
<td>637</td>
</tr>
<tr>
<td>Paints and painting</td>
<td>634–7</td>
</tr>
<tr>
<td>Panelled suspended ceiling</td>
<td>631–2</td>
</tr>
<tr>
<td>Parallel lay cable</td>
<td>403</td>
</tr>
<tr>
<td>Parane pine</td>
<td>641</td>
</tr>
<tr>
<td>Parapet wall</td>
<td>314</td>
</tr>
<tr>
<td>Partially preformed pile</td>
<td>217</td>
</tr>
<tr>
<td>Particle board</td>
<td>570, 644</td>
</tr>
<tr>
<td>Partitions:</td>
<td></td>
</tr>
<tr>
<td>demountable</td>
<td>552, 555–6</td>
</tr>
<tr>
<td>load-bearing</td>
<td>545, 547–9, 552</td>
</tr>
<tr>
<td>metal stud</td>
<td>554</td>
</tr>
<tr>
<td>non-load-bearing</td>
<td>545, 547, 552–6</td>
</tr>
<tr>
<td>timber stud</td>
<td>553</td>
</tr>
<tr>
<td>Passenger hoist</td>
<td>160</td>
</tr>
<tr>
<td>Passenger vehicles</td>
<td>156</td>
</tr>
<tr>
<td>Passive earth pressures</td>
<td>226</td>
</tr>
<tr>
<td>Patent glazing</td>
<td>480–1, 494–5</td>
</tr>
<tr>
<td>Patent scaffolding</td>
<td>128</td>
</tr>
<tr>
<td>Paved areas – drainage</td>
<td>653</td>
</tr>
<tr>
<td>Paving</td>
<td>115, 117, 119–20</td>
</tr>
<tr>
<td>Paving flags</td>
<td>120</td>
</tr>
<tr>
<td>Pedestal floor</td>
<td>591</td>
</tr>
<tr>
<td>Pendentive dome</td>
<td>9, 486</td>
</tr>
<tr>
<td>Penetration test</td>
<td>75, 103</td>
</tr>
<tr>
<td>Percussion bored piling</td>
<td>206–7</td>
</tr>
<tr>
<td>Performance requirements:</td>
<td></td>
</tr>
<tr>
<td>doors</td>
<td>361</td>
</tr>
<tr>
<td>roofs</td>
<td>434</td>
</tr>
<tr>
<td>windows</td>
<td>339</td>
</tr>
<tr>
<td>Perimeter trench excavation</td>
<td>239</td>
</tr>
<tr>
<td>Permanent exclusion of water</td>
<td>275, 280–4</td>
</tr>
<tr>
<td>Permanent formwork</td>
<td>379</td>
</tr>
<tr>
<td>Permitted development</td>
<td>39</td>
</tr>
<tr>
<td>Perspective drawing</td>
<td>24</td>
</tr>
<tr>
<td>Phenol formaldehyde</td>
<td>429, 645</td>
</tr>
<tr>
<td>Pigment</td>
<td>634</td>
</tr>
<tr>
<td>Pile</td>
<td></td>
</tr>
<tr>
<td>beams</td>
<td>222</td>
</tr>
<tr>
<td>caps</td>
<td>222, 209</td>
</tr>
<tr>
<td>classification</td>
<td>205</td>
</tr>
<tr>
<td>testing</td>
<td>222</td>
</tr>
<tr>
<td>types</td>
<td>206</td>
</tr>
<tr>
<td>Piled basements</td>
<td>242</td>
</tr>
<tr>
<td>Piled foundations</td>
<td>205–22</td>
</tr>
<tr>
<td>Piling</td>
<td></td>
</tr>
<tr>
<td>contiguous</td>
<td>281</td>
</tr>
<tr>
<td>hammers</td>
<td>220–1</td>
</tr>
<tr>
<td>helmets</td>
<td>213, 217</td>
</tr>
<tr>
<td>rigs</td>
<td>213, 216–7</td>
</tr>
<tr>
<td>steel sheet</td>
<td>263–4</td>
</tr>
<tr>
<td>Pillar tap</td>
<td>676</td>
</tr>
<tr>
<td>Pin or hinge joint</td>
<td>424</td>
</tr>
<tr>
<td>Pitch pine</td>
<td>641</td>
</tr>
<tr>
<td>Pitched roofs</td>
<td></td>
</tr>
<tr>
<td>domestic</td>
<td>436–58</td>
</tr>
<tr>
<td>industrial</td>
<td>473–80</td>
</tr>
<tr>
<td>Pitched trusses</td>
<td>441–2, 473–4, 479–80</td>
</tr>
<tr>
<td>Pivot window</td>
<td>348</td>
</tr>
<tr>
<td>Placing concrete</td>
<td>174</td>
</tr>
<tr>
<td>Plain tiles and tiling</td>
<td>445–7, 449–50, 498</td>
</tr>
<tr>
<td>Planer</td>
<td>638</td>
</tr>
<tr>
<td>Plank and pot floor</td>
<td>589</td>
</tr>
<tr>
<td>Planning application</td>
<td>39–43</td>
</tr>
<tr>
<td>Planning grid</td>
<td>44</td>
</tr>
</tbody>
</table>
Plant:
- bulldozer, 147
- concreting, 174–80
- considerations, 144
- costing, 145
- cranes, 162–73
- dumpers, 157, 177
- excavators, 151–5, 241
- forklift trucks, 158
- graders, 149
- hoists, 159–60
- scrapers, 148
- tractor shovel, 150
- transport vehicles, 156–8

Plaster:
- cove, 561, 629
- finish, 558
- plasterboard, 520, 559–62
- plasterboard ceiling, 446, 452–3, 526, 534, 595–6, 629
- plasterboard dry lining, 559–61
- plasters, 557
- plasticiser, 329
- platform floor, 596
- platform frame, 372
- plinths, 309
- plug wiring, 696
- plywood, 643
- pneumatic caisson, 266
- poker vibrator, 179
- poling boards, 255–6
- polyurethane paint, 634
- portal frames, 422–5, 428
- portsmouth float valve, 676
- post-tensioned retaining wall, 234
- post-tensioning, 234, 400–6
- power circuit, 696–7
- power float, 180
- precast concrete:
 - diaphragm wall, 283
 - floors, 568, 588–90
 - frames, 398–401
 - portal frames, 423
 - stairs, 612–5
- preformed concrete pile, 213–4
- preservative treatment, 429, 470, 472
- pressed steel lintels, 335
- pressure bulbs, 67–80
- prestressed concrete, 243, 402–8
- pretensioning, 404
- primary elements, 12
- primatic cylinder, 678
- principal contractor, 47
- profile boards, 108–9
- profiled surface, 120, 515, 541
- program of work, 32
- programmer/controller, 689
- project co-ordinator, 47

Prop design, 141
Proportional area method, 524, 526
Propressed structures, 432
Protection orders, 105
Public utility services, 106
Published Document, 56
Pump sizing, 276
Purlin fixings, 476–8, 480
Purlin roof, 440
Purpose designed excavators, 151
Purpose made joinery, 638
Putlog scaffold, 123
Putty, 352
Pynford stool underpinning, 272

Quarter sawn timber, 427
Quetta bond, 233–4

Raddors, 686–9
Radius of gyration, 421
Radon, 324
Raft basements, 242
Raft foundations, 199, 203
Rail tracks for cranes, 172
Rainscreen cladding, 501, 505
Rainwater drainage, 651–2, 656–8
Raised access floor, 591
Raking shore, 134, 136, 139
Racking struts, 137–8, 240
Rankine’s formula, 236
Rat trap bond, 301
Ready mixed concrete, 262
Ready mixed concrete truck, 177
Ready mixed mortar, 330
Redwood, 641
Reinforced concrete:
 - beams, 380–2
 - column design, 386–7
 - columns, 384–7
 - floors, 379, 583–7
 - formwork, 378, 393–7, 611
 - foundations, 197–9
 - lintels, 335
 - pile caps and beams, 222
 - raft foundation, 199, 203
 - reinforcement, 377–92
 - retaining walls, 229
 - slabs, 376–9
 - stairs, 607–10
 - strip foundations, 197, 201
- Reinforced masonry, 233–4, 302
- Reinforcement:
 - bar coding and schedules, 388–9
 - concrete cover, 392
 - grip length, 383
 - materials, 390
 - spacers, 392
Reinforcement (continued)
 spacing, 385
 types of bar, 390
 types of mesh, 391
Remedial dpc, 319–21
Remote crane control, 170
Rendhex box pile, 215
Replacement piling, 205–10
Residual current device, 693
Resin grout, 284
Resorcinol formaldehyde, 429, 643
Restraint straps, 468, 575, 577
Retaining walls, 223–37
Retaining walls – design, 236–7
Retro-ties and studs, 578
Reversing drum mixer, 176
Ribbed floor, 584–5, 596
Rider, 136
Ridge detail, 446–7, 452–3, 477, 480
Ridge piece, 476–7, 480
Ridge roll, 458
Ridge tiles, 445–7, 449, 452–3
Ridge ventilation, 444, 446, 465–7
Rigid pavings, 116
Rigid portal frames, 422–3, 425
Ring main wiring, 697
Roads:
 construction, 114–7
 drainage, 654–5
 earthworks, 115
 edgings, 118–9
 footpaths, 118
 forms, 116
 gullies, 653–5
 joints, 117
 kerbs, 119
 landscaping, 121
 pavings, 120
 services, 121
 setting out, 114
 signs, 121
Rolled steel joist, 410
Roll over crane skip, 174
Roller shutters, 366, 369
Roofs and roof covering:
 basic forms, 435–7
 built-up felt, 460–1, 463–4
 flat top girder, 479, 482
 long span, 479–84
 mastic asphalt, 464
 monitor, 479, 481
 northlight, 479–80
 performance, 434
 sheet coverings, 475–8
 shells, 486–93
 slating, 453–8
 space deck, 484
 space frame, 485
 surface water removal, 651–8
 thatching, 458
 thermal insulation, 526, 528–9, 533–4
 tiling, 445–7, 449–53
 timber flat, 435, 459–64
 timber pitched, 436–43
 trussed rafter, 442
 trusses, 441, 473
 underlay, 444
 ventilation, 465–7
Rooflights, 479, 481, 494–7
Room sealed appliance, 701
Rotary bored piling, 206, 209–10
Rotational dome, 9, 486
Rubble chutes and skips, 161
Runners, 256
Saddle vault, 490
Safe bearing, 194–5, 582
Safety signs, 48–9, 121
Sampling shells, 70
Sand bulking test, 99
Sand compaction, 288
Sand pugging, 596
Sanitary fittings:
 basin, 680
 bath, 681
 discharge systems, 683–4
 shower, 681
 sink, 680
 wc pan, 682
Sanitation systems, 683–5
Sanitation system testing, 685
Sapele, 642
Sash weights, 345
Saws, 638
Scaffolding:
 birdcage, 129
 boards, 123–5
 cantilever, 131
 component parts, 122
 gantry, 133
 independent, 124
 ladders, 123–4, 127
 mobile, 127
 patent, 128
 putlog, 123
 slung, 129
 suspended, 130
 truss-out, 132
 tying-in, 126
 working platform, 125
Scarf joint, 426
Scrapers, 148
Scree, 565–6, 573–4
Secondary beams, 7, 16, 415
<table>
<thead>
<tr>
<th>Secondary elements, 13</th>
<th>health and welfare, 91</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary glazing, 354</td>
<td>investigations, 64, 66, 286</td>
</tr>
<tr>
<td>Section factor, 417</td>
<td>layout, 80–2</td>
</tr>
<tr>
<td>Section modulus, 141, 418</td>
<td>lighting, 86–8</td>
</tr>
<tr>
<td>SEDBUK, 528</td>
<td>materials testing, 98–104</td>
</tr>
<tr>
<td>Segmental arch, 332</td>
<td>offices, 81–2, 90, 95</td>
</tr>
<tr>
<td>Self propelled crane, 163</td>
<td>plan, 20, 26, 39</td>
</tr>
<tr>
<td>Self supporting static crane, 169–70</td>
<td>security, 81, 83</td>
</tr>
<tr>
<td>Separate system, 660, 662</td>
<td>setting out, 107–13</td>
</tr>
<tr>
<td>Services fire stops and seals, 703</td>
<td>soil investigations, 64–71</td>
</tr>
<tr>
<td>Setting out:</td>
<td>storage, 92–7</td>
</tr>
<tr>
<td>angles, 109, 113</td>
<td>survey, 63, 291</td>
</tr>
<tr>
<td>bases, 109</td>
<td>Six wheeled grader, 149</td>
</tr>
<tr>
<td>basic outline, 107</td>
<td>Sketches, 21</td>
</tr>
<tr>
<td>drainage, 666</td>
<td>Skimmers, 151</td>
</tr>
<tr>
<td>grids, 109</td>
<td>Skips, 161</td>
</tr>
<tr>
<td>levelling, 111–2</td>
<td>Slates and slating, 453–7</td>
</tr>
<tr>
<td>reduced levels, 110</td>
<td>Slenderness ratio, 141, 327</td>
</tr>
<tr>
<td>roads, 114</td>
<td>Sliding doors, 366–8</td>
</tr>
<tr>
<td>theodolite, 109, 113</td>
<td>Sliding sash windows, 345–7</td>
</tr>
<tr>
<td>trenches, 108</td>
<td>Slump test, 101</td>
</tr>
<tr>
<td>Shear, 380, 419, 582</td>
<td>Slung scaffold, 129</td>
</tr>
<tr>
<td>Shear bars, 380</td>
<td>Small diameter piled foundation, 206–9</td>
</tr>
<tr>
<td>Shear box, 79</td>
<td>Smoke seal, 627</td>
</tr>
<tr>
<td>Shear leg rig, 70–1, 207</td>
<td>Smoke test, 685</td>
</tr>
<tr>
<td>Shear plate connector, 483</td>
<td>Snow loading, 195, 418</td>
</tr>
<tr>
<td>Shear strength of soils, 77–9</td>
<td>Soakaway, 658</td>
</tr>
<tr>
<td>Shear strength of timber, 582</td>
<td>Soakers, 450, 456, 709</td>
</tr>
<tr>
<td>Shear wall structures, 433</td>
<td>Socket outlets, 696–7</td>
</tr>
<tr>
<td>Sheathed cables, 694</td>
<td>Soil:</td>
</tr>
<tr>
<td>Shect coverings, 475–8</td>
<td>assessment, 73–9</td>
</tr>
<tr>
<td>Shell roofs, 486–91</td>
<td>classification, 73–5, 194</td>
</tr>
<tr>
<td>Shorin, 134–41</td>
<td>investigation, 63–71, 286</td>
</tr>
<tr>
<td>Short bored pile foundation, 198</td>
<td>particle size, 73</td>
</tr>
<tr>
<td>Shower, 681</td>
<td>samples, 66</td>
</tr>
<tr>
<td>Shutters, 369</td>
<td>stabilization and improvement, 286–90</td>
</tr>
<tr>
<td>Sight rails, 109–10, 114, 666</td>
<td>testing, 73–9</td>
</tr>
<tr>
<td>Sills, 337–8, 341–3, 345–9, 356</td>
<td>Solid block walls, 311</td>
</tr>
<tr>
<td>Silt test for sand, 100</td>
<td>Solid brick walls, 297–300</td>
</tr>
<tr>
<td>Simple drainage:</td>
<td>Solid slab raft, 203</td>
</tr>
<tr>
<td>bedding, 666</td>
<td>Sound insulating:</td>
</tr>
<tr>
<td>inspection chambers, 659–65</td>
<td>floors, 595–6</td>
</tr>
<tr>
<td>jointing, 666</td>
<td>walls, 593–4</td>
</tr>
<tr>
<td>roads, 654–5</td>
<td>Sound insulation, 592–6</td>
</tr>
<tr>
<td>setting out, 666</td>
<td>Sound reduction, 353, 592</td>
</tr>
<tr>
<td>systems, 659–62</td>
<td>Space deck, 10, 484</td>
</tr>
<tr>
<td>Simply supported RC slabs, 376–8</td>
<td>Space frame, 10, 485</td>
</tr>
<tr>
<td>Single acting hammer, 220</td>
<td>Spindle moulder, 638</td>
</tr>
<tr>
<td>Single barrel vault, 487</td>
<td>Spine beam stairs, 614</td>
</tr>
<tr>
<td>Single flying shore, 134, 137</td>
<td>Spiral stair, 609, 615, 617</td>
</tr>
<tr>
<td>Single lap tiles and tiling, 451–2</td>
<td>Splice joint, 425</td>
</tr>
<tr>
<td>Single span portal frames, 422–3, 425</td>
<td>Splicing collar, 213–4</td>
</tr>
<tr>
<td>Single stack drainage, 683</td>
<td>Split barrel sampler, 75</td>
</tr>
<tr>
<td>Sink, 680</td>
<td>Split load consumer unit, 693</td>
</tr>
<tr>
<td>Site:</td>
<td>Split ring connector, 693</td>
</tr>
<tr>
<td>construction activities, 18</td>
<td>Stack bond, 302</td>
</tr>
<tr>
<td>electrical supply, 89</td>
<td></td>
</tr>
</tbody>
</table>
Stairs:
- alternating tread, 604
- balusters, 597–8, 600–3, 606, 609–10, 615, 617–9
- balustrade, 13, 609–10, 615, 617–9
- formwork, 611
- handrail, 597, 600, 602, 605–6, 609–10, 615, 617, 619
- insitu RC, 607–11
- metal, 616–8
- open riser, 602–4
- precast concrete, 612–5
- timber, 597–606

Standard Assessment Procedure, 527, 531
Standard dumper, 157
Standard crane skip, 174

Steel:
- beam, 410–2
- beam design, 418–20
- cold rolled sections, 409
- column, 410–11
- compound design, 421
- fire protection, 416–7
- frame construction, 374–5
- gantry girder, 411
- hot rolled sections, 410
- lattice beams, 413
- portal frames, 425
- roof trusses, 473–4, 477, 479–81
- screw pile, 215
- sheet piling, 263–4
- standard sections, 409–10
- string stairs, 618
- tube pile, 216
- web lattice joist, 431

Stepped barrel vault, 489
Stepped flashing, 450, 709
Stepped foundation, 196
Stock holding policy, 95
Stop valve, 676–7
Storage of materials, 82, 92–7
Storage of water, 63, 275
Subsoil:
- drainage, 649–50
- movements, 184–8
- water, 63, 275

Substructure, 11
Sump pumping, 276
Surface water, 275, 648, 651–5
Surface water removal, 651–3
Survey:
- defects, 27–30, 188
- site, 63–4, 66, 286, 291
- structure, 27–30
- thermographic, 533
- suspended ceilings, 630–3
- suspended scaffold, 130
- suspended structures, 432
- suspended timber ground floors, 567
- suspended timber upper floors, 575–80
- swivel skip dumper, 157

Tactile pavings, 120
Tamping board vibrator, 179
Teak, 642
Telephone installation, 713–4
Telescopic boom forklift truck, 158
Telescopic crane, 164
Temporary bench mark, 107, 109–11
Temporary exclusion of water, 275–9
Temporary services, 81
Tendons, 403
Tenoning machine, 638
Test cubes, 101
Testing of materials, 98–104
Textured surfaces, 515
Thatched roof, 458
Theodolite, 109, 113
Thermal break, 356
Thermal bridging, 536–8
Thermal conductivity, 518, 520–4, 526
Thermal insulation, 517–35
Thermal resistance, 517–9, 523–6
Thin grouted membranes, 280
Thinners, 634
Three axle scraper, 148
Three centre arch, 332
Three pin portal frame, 422
Tile hanging, 498
Tilting drum mixer, 175–6
Tilting level, 111
Index

Timber:
- beam design, 580–2
- casement windows, 341–2
- connectors, 441, 482–3
- doors, 361–3, 367–8
- flat roofs, 435, 459–64
- frame construction, 372–3
- girders, 482
- hardwoods, 642
- joinery production, 638–42
- pile foundation, 211–2
- pitched roofs, 434, 436–44, 446–8, 452–3
- preservation, 469–70, 472
- softwoods, 641
- stairs, 597–606
- storage, 97
- stud partition, 552–3
- trestle, 216

Timbering, 255–6

Tooled surface, 515

Toothed plate connector, 441, 482–3

Top shore, 136, 139

Towed scraper, 148

Tower cranes, 82, 162, 169–72

Tower scaffold, 127

Track mounted crane, 172

Tractor shovel, 150

Traditional strip foundation, 190

Undercoating, 635

Unclassified glass, 351

Transport vehicles, 156–7

Transporting concrete, 174, 177

Traveller, 108–10, 666

Travelling tower crane, 169, 172

Tree protection, 105, 187

Trees – foundation damage, 185–6

Tremie pipe, 208, 282

Trench fill foundation, 201

Trench setting out, 108

Trench sheeting, 256, 263–4

Trial pits, 65, 69

Triangle of forces, 224

Triangular chart, 74

Triaxial compression test, 78

Tripod rig, 70–1, 207

Truss out scaffold, 132

Trussed rafter roof, 442

Tubular scaffolding, 122–33

Two axle scraper, 148

Two pin portal frame, 422

Two pipe heating, 687

Tying-in scaffolding, 126

U value calculations, 517–8, 522–6

U value objectives, 528–9

U values, 353, 355, 478, 517–8, 522–6, 528–30, 532–3

Unconfined compression test, 77

Vane test, 76

Vans, 156

Ventilated stack discharge system, 684

Vibration of soil, 286–8

Vibro cast insitu piling, 219

Volume batching, 259

Wall hooks, 136, 138–9

Wall plates, 136–9, 439–43, 446–8, 452–3, 458, 460, 464, 567

Wall profiles, 550

Wallboard, 561–2

Walls:
- cavity, 312–3, 326, 524, 535
- curtain, 508–11
- design strength, 327
- diaphragm, 243, 282–3, 316
- fin, 315
- formwork, 230–2
- glass block, 359–60
- infill panel, 501–4
- internal, 545–56
- openings, 331–8
- panelling, 640

Vacuum dewatering, 572

Valley beam, 480

Valley gutter, 452, 480

Valley tiles, 445, 449,

Valves and taps, 676

Vapour check plasterboard, 446, 452–3,

Vapour control layer, 444, 446–8, 452–3,

Vapour damping, 562

Vaults, 487–9

Ventilation of roof space, 444, 446–8,

Ventilation spacer, 446–7, 452–3

Verge details, 450, 461

Vertical casting, 516

Vertical laminations, 427

Vestibule frame, 357

Vibrating tamping beam, 179

Vibration of soil, 286–8

Vibro cast insitu piling, 219

Volume batching, 259

Wall hooks, 136, 138–9

Wall plates, 136–9, 439–43, 446–8, 452–3, 458, 460, 464, 567

Wall profiles, 550

Wallboard, 561–2

Walls:
- cavity, 312–3, 326, 524, 535
- curtain, 508–11
- design strength, 327
- diaphragm, 243, 282–3, 316
- fin, 315
- formwork, 230–2
- glass block, 359–60
- infill panel, 501–4
- internal, 545–56
- openings, 331–8
- panelling, 640

Vacuum dewatering, 572

Valley beam, 480

Valley gutter, 452, 480

Valley tiles, 445, 449,

Valves and taps, 676

Vapour check plasterboard, 446, 452–3,

Vapour control layer, 444, 446–8, 452–3,

Vapour damping, 562

Vaults, 487–9

Ventilation of roof space, 444, 446–8,

Ventilation spacer, 446–7, 452–3

Verge details, 450, 461

Vertical casting, 516

Vertical laminations, 427

Vestibule frame, 357

Vibrating tamping beam, 179

Vibration of soil, 286–8

Vibro cast insitu piling, 219

Volume batching, 259
<table>
<thead>
<tr>
<th>Walls (continued)</th>
<th>Western red cedar, 641</th>
</tr>
</thead>
<tbody>
<tr>
<td>remedial work, 578</td>
<td>Wet rot, 471–2</td>
</tr>
<tr>
<td>retaining, 223–37</td>
<td>Windows:</td>
</tr>
<tr>
<td>rising dampness, 319–22</td>
<td>aluminium casement, 356</td>
</tr>
<tr>
<td>slenderness ratio, 141, 328</td>
<td>bay, 349</td>
</tr>
<tr>
<td>solid block, 311, 549, 551</td>
<td>double glazing, 342, 348, 353, 355</td>
</tr>
<tr>
<td>solid brick, 297–301, 304–5</td>
<td>energy rating, 529, 530</td>
</tr>
<tr>
<td>sound insulation, 593–4</td>
<td>glass and glazing, 351–8</td>
</tr>
<tr>
<td>thermal insulation, 518–21, 524–5, 528–9, 533, 535</td>
<td>high performance, 342</td>
</tr>
<tr>
<td>thickness, 304–5, 326, 328</td>
<td>ironmongery, 344</td>
</tr>
<tr>
<td>tiling, 498, 563–4</td>
<td>metal casement, 343</td>
</tr>
<tr>
<td>underpinning, 268–73</td>
<td>oriel, 349</td>
</tr>
<tr>
<td>waterproofing basements, 245–9</td>
<td>performance requirements, 339</td>
</tr>
<tr>
<td>Warm deck, 460–1, 463</td>
<td>pivot, 340, 348</td>
</tr>
<tr>
<td>Wash boring, 71</td>
<td>schedules, 350</td>
</tr>
<tr>
<td>Water bar, 246–50, 364</td>
<td>secondary glazing, 354</td>
</tr>
<tr>
<td>Water based paint, 634</td>
<td>sliding sash, 345–7</td>
</tr>
<tr>
<td>Water/cement ratio, 245, 260</td>
<td>timber casement, 341–2</td>
</tr>
<tr>
<td>Water closet pan, 682</td>
<td>triple glazing, 355</td>
</tr>
<tr>
<td>Water installations:</td>
<td>types, 340</td>
</tr>
<tr>
<td>cisterns, 671–4, 677, 682, 686–8</td>
<td></td>
</tr>
<tr>
<td>cold, 669–72</td>
<td>Windows:</td>
</tr>
<tr>
<td>hot, 673–5</td>
<td>aluminium casement, 356</td>
</tr>
<tr>
<td>pipe joints, 679</td>
<td>bay, 349</td>
</tr>
<tr>
<td>supply, 669–70</td>
<td>double glazing, 342, 348, 353, 355</td>
</tr>
<tr>
<td>valves and taps, 676</td>
<td>energy rating, 529, 530</td>
</tr>
<tr>
<td>Water jetting, 277–9, 288</td>
<td>glass and glazing, 351–8</td>
</tr>
<tr>
<td>Water table, 63, 72, 275</td>
<td>high performance, 342</td>
</tr>
<tr>
<td>Water test, 667</td>
<td>ironmongery, 344</td>
</tr>
<tr>
<td>Waterproofing basements, 245–9</td>
<td>metal casement, 343</td>
</tr>
<tr>
<td>Weatherboarding, 498</td>
<td>oriel, 349</td>
</tr>
<tr>
<td>Web cleats, 414–5</td>
<td>performance requirements, 339</td>
</tr>
<tr>
<td>Weep holes, 223–9, 335, 338</td>
<td>pivot, 340, 348</td>
</tr>
<tr>
<td>Weight batching, 260</td>
<td>schedules, 350</td>
</tr>
<tr>
<td>Weights of materials, 33–4</td>
<td>secondary glazing, 354</td>
</tr>
<tr>
<td>Wellpoint systems, 278–9</td>
<td>sliding sash, 345–7</td>
</tr>
<tr>
<td>Western hemlock, 641</td>
<td>timber casement, 341–2</td>
</tr>
<tr>
<td></td>
<td>triple glazing, 355</td>
</tr>
<tr>
<td></td>
<td>types, 340</td>
</tr>
<tr>
<td></td>
<td>Windsor probe test, 103</td>
</tr>
<tr>
<td></td>
<td>Wired glass, 351</td>
</tr>
<tr>
<td></td>
<td>Wiring systems, 697–8</td>
</tr>
<tr>
<td></td>
<td>Wood cement board, 644</td>
</tr>
<tr>
<td></td>
<td>Wood rot, 472</td>
</tr>
<tr>
<td></td>
<td>Wood wool, 644</td>
</tr>
<tr>
<td></td>
<td>Woodworm, 469</td>
</tr>
<tr>
<td></td>
<td>Woodworking machinery, 638</td>
</tr>
<tr>
<td></td>
<td>Working platform, 125</td>
</tr>
<tr>
<td></td>
<td>Wrought iron dogs, 135, 137–8</td>
</tr>
<tr>
<td></td>
<td>Yokes, 397</td>
</tr>
<tr>
<td></td>
<td>Young’s modulus, 420, 581–2</td>
</tr>
<tr>
<td></td>
<td>Zed beam, 409, 476, 478</td>
</tr>
<tr>
<td></td>
<td>Zipper bond, 297</td>
</tr>
<tr>
<td></td>
<td>Zones, 45</td>
</tr>
<tr>
<td></td>
<td>Zurich Insurance, 27</td>
</tr>
</tbody>
</table>